Line data Source code
1 : // ----------------------------------------------------------------------
2 : //
3 : // ParticleName.cc
4 : // Author: Lynn Garren and Walter Brown
5 : //
6 : // Create a map that gives a standard name for each pre-defined
7 : // particle ID number. Also create a map for the reverse lookup of
8 : // the ID number from a string. These maps are initialized if and only if
9 : // the public functions are called. Because the maps are static,
10 : // the initialization happens only once.
11 : //
12 : // The user NEVER calls ParticleNameInit()
13 : // We use a data table (struct Snames) so that compile time is not impacted.
14 : //
15 : // public functions:
16 : // PartcleIdMap const & getPartcleIdMap()
17 : // std::string ParticleName( const int pid )
18 : // void listParticleNames( std::ostream & os )
19 : //
20 : // ----------------------------------------------------------------------
21 :
22 : #include <string>
23 : #include <map>
24 : #include <iostream>
25 : #include <sstream>
26 : #include <iomanip> // width
27 : #include <utility> // make_pair
28 :
29 : #include "HepPID/ParticleName.hh"
30 : #include "HepPID/ParticleIDMethods.hh"
31 : #include "HepPID/Version.hh"
32 :
33 : namespace HepPID {
34 :
35 : typedef std::map< int, std::string > PartcleIdMap;
36 : typedef std::map< std::string, int > ParticleLookupMap;
37 :
38 : ///
39 : /// \class ParticleNameMap
40 : /// \author Lynn Garren
41 : ///
42 : /// Used internally to store the static maps
43 : ///
44 : class ParticleNameMap{
45 :
46 : public:
47 :
48 : typedef PartcleIdMap::const_iterator idIterator;
49 : typedef ParticleLookupMap::const_iterator nameIterator;
50 :
51 0 : ParticleNameMap(PartcleIdMap m1,ParticleLookupMap m2)
52 0 : : itsNameMap(m1), itsLookupMap(m2) {}
53 0 : ~ParticleNameMap() {}
54 :
55 : PartcleIdMap nameMap() const { return itsNameMap; }
56 : ParticleLookupMap lookupMap() const { return itsLookupMap; }
57 : idIterator begin() const { return itsNameMap.begin(); }
58 : idIterator end() const { return itsNameMap.end(); }
59 : idIterator find( const int & id) const { return itsNameMap.find(id); }
60 : nameIterator beginLookupMap() const { return itsLookupMap.begin(); }
61 : nameIterator endLookupMap() const { return itsLookupMap.end(); }
62 : nameIterator findString( const std::string & s) const { return itsLookupMap.find(s); }
63 :
64 : private:
65 :
66 : PartcleIdMap itsNameMap;
67 : ParticleLookupMap itsLookupMap;
68 :
69 : // copies are not allowed
70 : ParticleNameMap( const ParticleNameMap & );
71 : ParticleNameMap & operator = ( const ParticleNameMap & );
72 :
73 : };
74 :
75 : namespace { // ParticleNameInit and ParticleNameMap are private
76 :
77 0 : ParticleNameMap const & ParticleNameInit()
78 : {
79 :
80 : PartcleIdMap m;
81 : ParticleLookupMap nameMap;
82 :
83 : static const struct {
84 : int pid;
85 : const char* pname;
86 : } SNames[] = {
87 : { 0, "" },
88 : { 1, "d" },
89 : { -1, "d~" },
90 : { 2, "u" },
91 : { -2, "u~" },
92 : { 3, "s" },
93 : { -3, "s~" },
94 : { 4, "c" },
95 : { -4, "c~" },
96 : { 5, "b" },
97 : { -5, "b~" },
98 : { 6, "t" },
99 : { -6, "t~" },
100 : { 7, "b'" },
101 : { -7, "b'~" },
102 : { 8, "t'" },
103 : { -8, "t'~" },
104 : { 11, "e^-" },
105 : { -11, "e^+" },
106 : { 12, "nu_e" },
107 : { -12, "nu_e~" },
108 : { 13, "mu^-" },
109 : { -13, "mu^+" },
110 : { 14, "nu_mu" },
111 : { -14, "nu_mu~" },
112 : { 15, "tau^-" },
113 : { -15, "tau^+" },
114 : { 16, "nu_tau" },
115 : { -16, "nu_tau~" },
116 : { 17, "tau'^-" },
117 : { -17, "tau'^+" },
118 : { 18, "nu_tau'" },
119 : { -18, "nu_tau'~" },
120 : { 21, "g" },
121 : { 22, "gamma" },
122 : { 10022, "virtual-photon" },
123 : { 20022, "Cerenkov-radiation" },
124 : { 23, "Z^0" },
125 : { 24, "W^+" },
126 : { -24, "W^-" },
127 : { 25, "H_1^0" },
128 : { 32, "Z_2^0" },
129 : { 33, "Z_3^0" },
130 : { 34, "W_2^+" },
131 : { -34, "W_2^-" },
132 : { 35, "H_2^0" },
133 : { 36, "H_3^0" },
134 : { 37, "H^+" },
135 : { -37, "H^-" },
136 : { 39, "G" },
137 : { 41, "R^0" },
138 : { -41, "R~^0" },
139 : { 42, "LQ_c" },
140 : { -42, "LQ_c~" },
141 : { 43, "Xu^0" },
142 : { 44, "Xu^+" },
143 : { -44, "Xu^-" },
144 : { 51, "H_L^0" },
145 : { 52, "H_1^++" },
146 : { -52, "H_1^--" },
147 : { 53, "H_2^+" },
148 : { -53, "H_2^-" },
149 : { 54, "H_2^++" },
150 : { -54, "H_2^--" },
151 : { 55, "H_4^0" },
152 : { -55, "H_4~^0" },
153 : { 81, "generator-specific+81" },
154 : { 82, "generator-specific+82" },
155 : { 83, "generator-specific+83" },
156 : { 84, "generator-specific+84" },
157 : { 85, "generator-specific+85" },
158 : { 86, "generator-specific+86" },
159 : { 87, "generator-specific+87" },
160 : { 88, "generator-specific+88" },
161 : { 89, "generator-specific+89" },
162 : { 90, "generator-specific+90" },
163 : { 91, "generator-specific+91" },
164 : { 92, "generator-specific+92" },
165 : { 93, "generator-specific+93" },
166 : { 94, "generator-specific+94" },
167 : { 95, "generator-specific+95" },
168 : { 96, "generator-specific+96" },
169 : { 97, "generator-specific+97" },
170 : { 98, "generator-specific+98" },
171 : { 99, "generator-specific+99" },
172 : { -81, "generator-specific-81" },
173 : { -82, "generator-specific-82" },
174 : { -83, "generator-specific-83" },
175 : { -84, "generator-specific-84" },
176 : { -85, "generator-specific-85" },
177 : { -86, "generator-specific-86" },
178 : { -87, "generator-specific-87" },
179 : { -88, "generator-specific-88" },
180 : { -89, "generator-specific-89" },
181 : { -90, "generator-specific-90" },
182 : { -91, "generator-specific-91" },
183 : { -92, "generator-specific-92" },
184 : { -93, "generator-specific-93" },
185 : { -94, "generator-specific-94" },
186 : { -95, "generator-specific-95" },
187 : { -96, "generator-specific-96" },
188 : { -97, "generator-specific-97" },
189 : { -98, "generator-specific-98" },
190 : { -99, "generator-specific-99" },
191 : { 100, "generator-specific+100" },
192 : { -100, "generator-specific-100" },
193 : { 101, "geantino" },
194 : { 102, "charged-geantino" },
195 : { 110, "reggeon" },
196 : { 130, "K_L^0" },
197 : { 310, "K_S^0" },
198 : { 990, "pomeron" },
199 : { 9990, "odderon" },
200 : { 1000001, "susy-d_L" },
201 : { -1000001, "susy-d_L~" },
202 : { 1000002, "susy-u_L" },
203 : { -1000002, "susy-u_L~" },
204 : { 1000003, "susy-s_L" },
205 : { -1000003, "susy-s_L~" },
206 : { 1000004, "susy-c_L" },
207 : { -1000004, "susy-c_L~" },
208 : { 1000005, "susy-b_1" },
209 : { -1000005, "susy-b_1~" },
210 : { 1000006, "susy-t_1" },
211 : { -1000006, "susy-t_1~" },
212 : { 1000011, "susy-e_L^-" },
213 : { -1000011, "susy-e_L^+" },
214 : { 1000012, "susy-nu_eL" },
215 : { -1000012, "susy-nu_eL~" },
216 : { 1000013, "susy-mu_L^-" },
217 : { -1000013, "susy-mu_L^+" },
218 : { 1000014, "susy-nu_muL" },
219 : { -1000014, "susy-nu_muL~" },
220 : { 1000015, "susy-tau_L^-" },
221 : { -1000015, "susy-tau_L^+" },
222 : { 1000016, "susy-nu_tauL" },
223 : { -1000016, "susy-nu_tauL~" },
224 : { 1000021, "gluino" },
225 : { 1000022, "susy-chi_1^0" },
226 : { 1000023, "susy-chi_2^0" },
227 : { 1000024, "susy-chi_1^+" },
228 : { -1000024, "susy-chi_1^-" },
229 : { 1000025, "susy-chi_3^0" },
230 : { 1000035, "susy-chi_4^0" },
231 : { 1000037, "susy-chi_2^+" },
232 : { -1000037, "susy-chi_2^-" },
233 : { 1000039, "gravitino" },
234 : { 2000001, "susy-d_R" },
235 : { -2000001, "susy-d_R~" },
236 : { 2000002, "susy-u_R" },
237 : { -2000002, "susy-u_R~" },
238 : { 2000003, "susy-s_R" },
239 : { -2000003, "susy-s_R~" },
240 : { 2000004, "susy-c_R" },
241 : { -2000004, "susy-c_R~" },
242 : { 2000005, "susy-b_R" },
243 : { -2000005, "susy-b_R~" },
244 : { 2000006, "susy-t_R" },
245 : { -2000006, "susy-t_R~" },
246 : { 2000011, "susy-e_R^-" },
247 : { -2000011, "susy-e_R^+" },
248 : { 2000012, "susy-nu_eR" },
249 : { -2000012, "susy-nu_eR~" },
250 : { 2000013, "susy-mu_R^-" },
251 : { -2000013, "susy-mu_R^+" },
252 : { 2000014, "susy-nu_muR" },
253 : { -2000014, "susy-nu_muR~" },
254 : { 2000015, "susy-tau_R^-" },
255 : { -2000015, "susy-tau_R^+" },
256 : { 2000016, "susy-nu_tauR" },
257 : { -2000016, "susy-nu_tauR~" },
258 : { 3100021, "V8_tech" },
259 : { -3100021, "V8_tech~" },
260 : { 3000111, "pi_tech^0" },
261 : { 3000115, "a_tech^0" },
262 : { 3060111, "pi_tech_22_1" },
263 : { 3160111, "pi_tech_22_8" },
264 : { 3000113, "rho_tech^0" },
265 : { 3130113, "rho_tech_11" },
266 : { 3140113, "rho_tech_12" },
267 : { 3150113, "rho_tech_21" },
268 : { 3160113, "rho_tech_22" },
269 : { 3000211, "pi_tech^+" },
270 : { -3000211, "pi_tech^-" },
271 : { 3000213, "rho_tech^+" },
272 : { -3000213, "rho_tech^-" },
273 : { 3000215, "a_tech^+" },
274 : { -3000215, "a_tech^-" },
275 : { 3000221, "pi'_tech" },
276 : { 3100221, "eta_tech" },
277 : { 3000223, "omega_tech" },
278 : { 4000001, "d*" },
279 : { -4000001, "d*~" },
280 : { 4000002, "u*" },
281 : { -4000002, "u*~" },
282 : { 4000011, "e*^-" },
283 : { -4000011, "e*^+" },
284 : { 4000012, "nu*_e" },
285 : { -4000012, "nu*_e~" },
286 : { 4000039, "G*" },
287 : { -4000039, "G*~" },
288 : { 5000040, "black_hole" },
289 : { 5100001, "d_L^(1)" },
290 : { -5100001, "d~_L^(1)" },
291 : { 5100002, "u_L^(1)" },
292 : { -5100002, "u~_L^(1)" },
293 : { 5100003, "s_L^(1)" },
294 : { -5100003, "s~_L^(1)" },
295 : { 5100004, "c_L^(1)" },
296 : { -5100004, "c~_L^(1)" },
297 : { 5100005, "b_L^(1)" },
298 : { -5100005, "b~_L^(1)" },
299 : { 5100006, "t_L^(1)" },
300 : { -5100006, "t~_L^(1)" },
301 : { 5100011, "e_L^(1)-" },
302 : { -5100011, "e_L^(1)+" },
303 : { 5100012, "nu_eL^(1)" },
304 : { -5100012, "nu_eL~^(1)" },
305 : { 5100013, "mu_L^(1)-" },
306 : { -5100013, "mu_L^(1)+" },
307 : { 5100014, "nu_muL^(1)" },
308 : { -5100014, "nu_muL~^(1)" },
309 : { 5100015, "tau_L^(1)-" },
310 : { -5100015, "tau_L^(1)+" },
311 : { 5100016, "nu_tauL^(1)" },
312 : { -5100016, "nu_tauL~^(1)" },
313 : { 6100001, "d_R^(1)" },
314 : { -6100001, "d~_R^(1)" },
315 : { 6100002, "u_R^(1)" },
316 : { -6100002, "u~_R^(1)" },
317 : { 6100003, "s_R^(1)" },
318 : { -6100003, "s~_R^(1)" },
319 : { 6100004, "c_R^(1)" },
320 : { -6100004, "c~_R^(1)" },
321 : { 6100005, "b_R^(1)" },
322 : { -6100005, "b~_R^(1)" },
323 : { 6100006, "t_R^(1)" },
324 : { -6100006, "t~_R^(1)" },
325 : { 6100011, "e_R^(1)-" },
326 : { -6100011, "e_R^(1)+" },
327 : { 6100012, "nu_eR^(1)" },
328 : { -6100012, "nu_eR~^(1)" },
329 : { 6100013, "mu_R^(1)-" },
330 : { -6100013, "mu_R^(1)+" },
331 : { 6100014, "nu_muR^(1)" },
332 : { -6100014, "nu_muR~^(1)" },
333 : { 6100015, "tau_R^(1)-" },
334 : { -6100015, "tau_R^(1)+" },
335 : { 6100016, "nu_tauR^(1)" },
336 : { -6100016, "nu_tauR~^(1)" },
337 : { 5100021, "g^(1)" },
338 : { 5100022, "gamma^(1)" },
339 : { 5100023, "Z^(1)0" },
340 : { 5100024, "W^(1)+" },
341 : { -5100024, "W^(1)-" },
342 : { 5100025, "h^(1)0" },
343 : { 5100039, "G^(1)" },
344 : { 9900012, "nu_Re" },
345 : { -9900012, "nu_Re~" },
346 : { 9900014, "nu_Rmu" },
347 : { -9900014, "nu_Rmu~" },
348 : { 9900016, "nu_Rtau" },
349 : { -9900016, "nu_Rtau~" },
350 : { 9900023, "Z_R^0" },
351 : { -9900023, "Z_R~^0" },
352 : { 9900024, "W_R^+" },
353 : { -9900024, "W_R^-" },
354 : { 9900041, "H_L^++" },
355 : { -9900041, "H_L^--" },
356 : { 9900042, "H_R^++" },
357 : { -9900042, "H_R^--" },
358 : { 9910113, "rho_diffr^0" },
359 : { 9910211, "pi_diffr^+" },
360 : { -9910211, "pi_diffr^-" },
361 : { 9910223, "omega_diffr" },
362 : { 9910333, "phi_diffr" },
363 : { 9910443, "psi_diffr" },
364 : { 9912112, "n_diffr^0" },
365 : { -9912112, "n_diffr~^0" },
366 : { 9912212, "p_diffr^+" },
367 : { -9912212, "p_diffr~^-" },
368 : { 9920022, "remnant photon" },
369 : { 9922212, "remnant nucleon" },
370 : { -9922212, "remnant nucleon~" },
371 : { 9900441, "cc~[1S08]" },
372 : { 9910441, "cc~[3P08]" },
373 : { 9900443, "cc~[3S18]" },
374 : { 9900551, "bb~[1S08]" },
375 : { 9910551, "bb~[3P08]" },
376 : { 9900553, "bb~[3S18]" },
377 : { 1103, "dd_1" },
378 : { -1103, "dd_1~" },
379 : { 2101, "ud_0" },
380 : { -2101, "ud_0~" },
381 : { 2103, "ud_1" },
382 : { -2103, "ud_1~" },
383 : { 2203, "uu_1" },
384 : { -2203, "uu_1~" },
385 : { 3101, "sd_0" },
386 : { -3101, "sd_0~" },
387 : { 3103, "sd_1" },
388 : { -3103, "sd_1~" },
389 : { 3201, "su_0" },
390 : { -3201, "su_0~" },
391 : { 3203, "su_1" },
392 : { -3203, "su_1~" },
393 : { 3303, "ss_1" },
394 : { -3303, "ss_1~" },
395 : { 4101, "cd_0" },
396 : { -4101, "cd_0~" },
397 : { 4103, "cd_1" },
398 : { -4103, "cd_1~" },
399 : { 4201, "cu_0" },
400 : { -4201, "cu_0~" },
401 : { 4203, "cu_1" },
402 : { -4203, "cu_1~" },
403 : { 4301, "cs_0" },
404 : { -4301, "cs_0~" },
405 : { 4303, "cs_1" },
406 : { -4303, "cs_1~" },
407 : { 4403, "cc_1" },
408 : { -4403, "cc_1~" },
409 : { 5101, "bd_0" },
410 : { -5101, "bd_0~" },
411 : { 5103, "bd_1" },
412 : { -5103, "bd_1~" },
413 : { 5201, "bu_0" },
414 : { -5201, "bu_0~" },
415 : { 5203, "bu_1" },
416 : { -5203, "bu_1~" },
417 : { 5301, "bs_0" },
418 : { -5301, "bs_0~" },
419 : { 5303, "bs_1" },
420 : { -5303, "bs_1~" },
421 : { 5401, "bc_0" },
422 : { -5401, "bc_0~" },
423 : { 5403, "bc_1" },
424 : { -5403, "bc_1~" },
425 : { 5503, "bb_1" },
426 : { -5503, "bb_1~" },
427 : { 6101, "td_0" },
428 : { -6101, "td_0~" },
429 : { 6103, "td_1" },
430 : { -6103, "td_1~" },
431 : { 6201, "tu_0" },
432 : { -6201, "tu_0~" },
433 : { 6203, "tu_1" },
434 : { -6203, "tu_1~" },
435 : { 6301, "ts_0" },
436 : { -6301, "ts_0~" },
437 : { 6303, "ts_1" },
438 : { -6303, "ts_1~" },
439 : { 6401, "tc_0" },
440 : { -6401, "tc_0~" },
441 : { 6403, "tc_1" },
442 : { -6403, "tc_1~" },
443 : { 6501, "tb_0" },
444 : { -6501, "tb_0~" },
445 : { 6503, "tb_1" },
446 : { -6503, "tb_1~" },
447 : { 6603, "tt_1" },
448 : { -6603, "tt_1~" },
449 : { 7101, "b'd_0" },
450 : { -7101, "b'd_0~" },
451 : { 7103, "b'd_1" },
452 : { -7103, "b'd_1~" },
453 : { 7201, "b'u_0" },
454 : { -7201, "b'u_0~" },
455 : { 7203, "b'u_1" },
456 : { -7203, "b'u_1~" },
457 : { 7301, "b's_0" },
458 : { -7301, "b's_0~" },
459 : { 7303, "b's_1" },
460 : { -7303, "b's_1~" },
461 : { 7401, "b'c_0" },
462 : { -7401, "b'c_0~" },
463 : { 7403, "b'c_1" },
464 : { -7403, "b'c_1~" },
465 : { 7501, "b'b_0" },
466 : { -7501, "b'b_0~" },
467 : { 7503, "b'b_1" },
468 : { -7503, "b'b_1~" },
469 : { 7601, "b't_0" },
470 : { -7601, "b't_0~" },
471 : { 7603, "b't_1" },
472 : { -7603, "b't_1~" },
473 : { 7703, "b'b'_1" },
474 : { -7703, "b'b'_1~" },
475 : { 8101, "t'd_0" },
476 : { -8101, "t'd_0~" },
477 : { 8103, "t'd_1" },
478 : { -8103, "t'd_1~" },
479 : { 8201, "t'u_0" },
480 : { -8201, "t'u_0~" },
481 : { 8203, "t'u_1" },
482 : { -8203, "t'u_1~" },
483 : { 8301, "t's_0" },
484 : { -8301, "t's_0~" },
485 : { 8303, "t's_1" },
486 : { -8303, "t's_1~" },
487 : { 8401, "t'c_0" },
488 : { -8401, "t'c_0~" },
489 : { 8403, "t'c_1" },
490 : { -8403, "t'c_1~" },
491 : { 8501, "t'b_0" },
492 : { -8501, "t'b_0~" },
493 : { 8503, "t'b_1" },
494 : { -8503, "t'b_1~" },
495 : { 8601, "t't_0" },
496 : { -8601, "t't_0~" },
497 : { 8603, "t't_1" },
498 : { -8603, "t't_1~" },
499 : { 8701, "t'b'_0" },
500 : { -8701, "t'b'_0~" },
501 : { 8703, "t'b'_1" },
502 : { -8703, "t'b'_1~" },
503 : { 8803, "t't'_1" },
504 : { -8803, "t't'_1~" },
505 : { 111, "pi^0" },
506 : { 9000111, "a_0(980)^0" },
507 : { 10111, "a_0(1450)^0" },
508 : { 100111, "pi(1300)^0" },
509 : { 9010111, "pi(1800)^0" },
510 : { 113, "rho(770)^0" },
511 : { 10113, "b_1(1235)^0" },
512 : { 20113, "a_1(1260)^0" },
513 : { 9000113, "pi_1(1400)^0" },
514 : { 100113, "rho(1450)^0" },
515 : { 9010113, "pi_1(1600)^0" },
516 : { 9020113, "a_1(1640)^0" },
517 : { 30113, "rho(1700)^0" },
518 : { 9030113, "rho(1900)^0" },
519 : { 9040113, "rho(2150)^0" },
520 : { 115, "a_2(1320)^0" },
521 : { 10115, "pi_2(1670)^0" },
522 : { 9000115, "a_2(1700)^0" },
523 : { 9010115, "pi_2(2100)^0" },
524 : { 117, "rho_3(1690)^0" },
525 : { 9000117, "rho_3(1990)^0" },
526 : { 9010117, "rho_3(2250)^0" },
527 : { 119, "a_4(2040)^0" },
528 : { 211, "pi^+" },
529 : { -211, "pi^-" },
530 : { 9000211, "a_0(980)^+" },
531 : { -9000211, "a_0(980)^-" },
532 : { 10211, "a_0(1450)^+" },
533 : { -10211, "a_0(1450)^-" },
534 : { 100211, "pi(1300)^+" },
535 : { -100211, "pi(1300)^-" },
536 : { 9010211, "pi(1800)^+" },
537 : { -9010211, "pi(1800)^-" },
538 : { 213, "rho(770)^+" },
539 : { -213, "rho(770)^-" },
540 : { 10213, "b_1(1235)^+" },
541 : { -10213, "b_1(1235)^-" },
542 : { 20213, "a_1(1260)^+" },
543 : { -20213, "a_1(1260)^-" },
544 : { 9000213, "pi_1(1400)^+" },
545 : { -9000213, "pi_1(1400)^-" },
546 : { 100213, "rho(1450)^+" },
547 : { -100213, "rho(1450)^-" },
548 : { 9010213, "pi_1(1600)^+" },
549 : { -9010213, "pi_1(1600)^-" },
550 : { 9020213, "a_1(1640)^+" },
551 : { -9020213, "a_1(1640)^-" },
552 : { 30213, "rho(1700)^+" },
553 : { -30213, "rho(1700)^-" },
554 : { 9030213, "rho(1900)^+" },
555 : { -9030213, "rho(1900)^-" },
556 : { 9040213, "rho(2150)^+" },
557 : { -9040213, "rho(2150)^-" },
558 : { 215, "a_2(1320)^+" },
559 : { -215, "a_2(1320)^-" },
560 : { 10215, "pi_2(1670)^+" },
561 : { -10215, "pi_2(1670)^-" },
562 : { 9000215, "a_2(1700)^+" },
563 : { -9000215, "a_2(1700)^-" },
564 : { 9010215, "pi_2(2100)^+" },
565 : { -9010215, "pi_2(2100)^-" },
566 : { 217, "rho_3(1690)^+" },
567 : { -217, "rho_3(1690)^-" },
568 : { 9000217, "rho_3(1990)^+" },
569 : { -9000217, "rho_3(1990)^-" },
570 : { 9010217, "rho_3(2250)^+" },
571 : { -9010217, "rho_3(2250)^-" },
572 : { 219, "a_4(2040)^+" },
573 : { -219, "a_4(2040)^-" },
574 : { 221, "eta" },
575 : { 9000221, "f_0(600)" },
576 : { 10221, "f_0(1370)" },
577 : { 9010221, "f_0(980)" },
578 : { 9020221, "eta(1405)" },
579 : { 9030221, "f_0(1500)" },
580 : { 9040221, "eta(1760)" },
581 : { 9050221, "f_0(2020)" },
582 : { 9060221, "f_0(2100)" },
583 : { 9070221, "f_0(2200)" },
584 : { 9080221, "eta(2225)" },
585 : { 9090221, "sigma_0" },
586 : { 100221, "eta(1295)" },
587 : { 331, "eta'(958)" },
588 : { 10331, "f_0(1710)" },
589 : { 100331, "eta(1475)" },
590 : { 223, "omega(782)" },
591 : { 9000223, "f_1(1510)" },
592 : { 9010223, "h_1(1595)" },
593 : { 10223, "h_1(1170)" },
594 : { 20223, "f_1(1285)" },
595 : { 30223, "omega(1650)" },
596 : { 100223, "omega(1420)" },
597 : { 333, "phi(1020)" },
598 : { 10333, "h_1(1380)" },
599 : { 20333, "f_1(1420)" },
600 : { 100333, "phi(1680)" },
601 : { 225, "f_2(1270)" },
602 : { 9000225, "f_2(1430)" },
603 : { 10225, "eta_2(1645)" },
604 : { 9010225, "f_2(1565)" },
605 : { 9020225, "f_2(1640)" },
606 : { 9030225, "f_2(1810)" },
607 : { 9040225, "f_2(1910)" },
608 : { 9050225, "f_2(1950)" },
609 : { 9060225, "f_2(2010)" },
610 : { 9070225, "f_2(2150)" },
611 : { 9080225, "f_2(2300)" },
612 : { 9090225, "f_2(2340)" },
613 : { 335, "f'_2(1525)" },
614 : { 10335, "eta_2(1870)" },
615 : { 227, "omega_3(1670)" },
616 : { 337, "phi_3(1850)" },
617 : { 229, "f_4(2050)" },
618 : { 9000229, "f_J(2220)" },
619 : { 9010229, "f_4(2300)" },
620 : { 311, "K^0" },
621 : { -311, "K~^0" },
622 : { 9000311, "K*_0(800)^0" },
623 : { -9000311, "K*_0(800)~^0" },
624 : { 10311, "K*_0(1430)^0" },
625 : { -10311, "K*_0(1430)~^0" },
626 : { 100311, "K(1460)^0" },
627 : { -100311, "K(1460)~^0" },
628 : { 9010311, "K(1830)^0" },
629 : { -9010311, "K(1830)~^0" },
630 : { 9020311, "K*_0(1950)^0" },
631 : { -9020311, "K*_0(1950)~^0" },
632 : { 321, "K^+" },
633 : { -321, "K^-" },
634 : { 9000321, "K*_0(800)^+" },
635 : { -9000321, "K*_0(800)^-" },
636 : { 10321, "K*_0(1430)^+" },
637 : { -10321, "K*_0(1430)^-" },
638 : { 100321, "K(1460)^+" },
639 : { -100321, "K(1460)^-" },
640 : { 9010321, "K(1830)^+" },
641 : { -9010321, "K(1830)^-" },
642 : { 9020321, "K*_0(1950)^+" },
643 : { -9020321, "K*_0(1950)^-" },
644 : { 313, "K*(892)^0" },
645 : { -313, "K*(892)~^0" },
646 : { 10313, "K_1(1270)^0" },
647 : { -10313, "K_1(1270)~^0" },
648 : { 20313, "K_1(1400)^0" },
649 : { -20313, "K_1(1400)~^0" },
650 : { 30313, "K*(1680)^0" },
651 : { -30313, "K*(1680)~^0" },
652 : { 100313, "K*(1410)^0" },
653 : { -100313, "K*(1410)~^0" },
654 : { 9000313, "K_1(1650)^0" },
655 : { -9000313, "K_1(1650)~^0" },
656 : { 323, "K*(892)^+" },
657 : { -323, "K*(892)^-" },
658 : { 10323, "K_1(1270)^+" },
659 : { -10323, "K_1(1270)^-" },
660 : { 20323, "K_1(1400)^+" },
661 : { -20323, "K_1(1400)^-" },
662 : { 30323, "K*(1680)^+" },
663 : { -30323, "K*(1680)^-" },
664 : { 100323, "K*(1410)^+" },
665 : { -100323, "K*(1410)^-" },
666 : { 9000323, "K_1(1650)^+" },
667 : { -9000323, "K_1(1650)^-" },
668 : { 315, "K*_2(1430)^0" },
669 : { -315, "K*_2(1430)~^0" },
670 : { 9000315, "K_2(1580)^0" },
671 : { -9000315, "K_2(1580)~^0" },
672 : { 10315, "K_2(1770)^0" },
673 : { -10315, "K_2(1770)~^0" },
674 : { 9010315, "K*_2(1980)^0" },
675 : { -9010315, "K*_2(1980)~^0" },
676 : { 9020315, "K_2(2250)^0" },
677 : { -9020315, "K_2(2250)~^0" },
678 : { 20315, "K_2(1820)^0" },
679 : { -20315, "K_2(1820)~^0" },
680 : { 325, "K*_2(1430)^+" },
681 : { -325, "K*_2(1430)^-" },
682 : { 9000325, "K_2(1580)^+" },
683 : { -9000325, "K_2(1580)^-" },
684 : { 10325, "K_2(1770)^+" },
685 : { -10325, "K_2(1770)^-" },
686 : { 9010325, "K*_2(1980)^+" },
687 : { -9010325, "K*_2(1980)^-" },
688 : { 9020325, "K_2(2250)^+" },
689 : { -9020325, "K_2(2250)^-" },
690 : { 20325, "K_2(1820)^+" },
691 : { -20325, "K_2(1820)^-" },
692 : { 100325, "K_2(1980)^+" },
693 : { -100325, "K_2(1980)^-" },
694 : { 317, "K*_3(1780)^0" },
695 : { -317, "K*_3(1780)~^0" },
696 : { 9010317, "K_3(2320)^0" },
697 : { -9010317, "K_3(2320)~^0" },
698 : { 327, "K*_3(1780)^+" },
699 : { -327, "K*_3(1780)^-" },
700 : { 9010327, "K_3(2320)^+" },
701 : { -9010327, "K_3(2320)^-" },
702 : { 319, "K*_4(2045)^0" },
703 : { -319, "K*_4(2045)~^0" },
704 : { 9000319, "K_4(2500)^0" },
705 : { -9000319, "K_4(2500)~^0" },
706 : { 329, "K*_4(2045)^+" },
707 : { -329, "K*_4(2045)^-" },
708 : { 9000329, "K_4(2500)^+" },
709 : { -9000329, "K_4(2500)^-" },
710 : { 411, "D^+" },
711 : { -411, "D^-" },
712 : { 10411, "D*_0(2400)^+" },
713 : { -10411, "D*_0(2400)^-" },
714 : { 100411, "D(2S)^+" },
715 : { -100411, "D(2S)^-" },
716 : { 413, "D*(2010)^+" },
717 : { -413, "D*(2010)^-" },
718 : { 10413, "D_1(2420)^+" },
719 : { -10413, "D_1(2420)^-" },
720 : { 20413, "D_1(H)^+" },
721 : { -20413, "D_1(H)^-" },
722 : { 100413, "D*(2S)^+" },
723 : { -100413, "D*(2S)^-" },
724 : { 415, "D*_2(2460)^+" },
725 : { -415, "D*_2(2460)^-" },
726 : { 421, "D^0" },
727 : { -421, "D~^0" },
728 : { 10421, "D*_0(2400)^0" },
729 : { -10421, "D*_0(2400)~^0" },
730 : { 100421, "D(2S)^0" },
731 : { -100421, "D(2S)~^0" },
732 : { 423, "D*(2007)^0" },
733 : { -423, "D*(2007)~^0" },
734 : { 10423, "D_1(2420)^0" },
735 : { -10423, "D_1(2420)~^0" },
736 : { 20423, "D_1(2430)^0" },
737 : { -20423, "D_1(2430)~^0" },
738 : { 100423, "D*(2S)^0" },
739 : { -100423, "D*(2S)~^0" },
740 : { 425, "D*_2(2460)^0" },
741 : { -425, "D*_2(2460)~^0" },
742 : { 431, "D_s^+" },
743 : { -431, "D_s^-" },
744 : { 10431, "D*_s0(2317)^+" },
745 : { -10431, "D*_s0(2317)^-" },
746 : { 433, "D*_s^+" },
747 : { -433, "D*_s^-" },
748 : { 10433, "D_s1(2536)^+" },
749 : { -10433, "D_s1(2536)^-" },
750 : { 20433, "D_s1(2460)^+" },
751 : { -20433, "D_s1(2460)^-" },
752 : { 435, "D*_s2(2573)^+" },
753 : { -435, "D*_s2(2573)^-" },
754 : { 441, "eta_c(1S)" },
755 : { 10441, "chi_c0(1P)" },
756 : { 100441, "eta_c(2S)" },
757 : { 443, "J/psi(1S)" },
758 : { 9000443, "psi(4040)" },
759 : { 10443, "hc(1P)" },
760 : { 9010443, "psi(4160)" },
761 : { 20443, "chi_c1(1P)" },
762 : { 9020443, "psi(4415)" },
763 : { 30443, "psi(3770)" },
764 : { 100443, "psi(2S)" },
765 : { 445, "chi_c2(1P)" },
766 : { 100445, "chi_c2(2P)" },
767 : { 511, "B^0" },
768 : { -511, "B~^0" },
769 : { 10511, "B*_0^0" },
770 : { -10511, "B*_0~^0" },
771 : { 513, "B*^0" },
772 : { -513, "B*~^0" },
773 : { 10513, "B_1(L)^0" },
774 : { -10513, "B_1(L)~^0" },
775 : { 20513, "B_1(H)^0" },
776 : { -20513, "B_1(H)~^0" },
777 : { 515, "B*_2^0" },
778 : { -515, "B*_2~^0" },
779 : { 521, "B^+" },
780 : { -521, "B^-" },
781 : { 10521, "B*_0^+" },
782 : { -10521, "B*_0^-" },
783 : { 523, "B*^+" },
784 : { -523, "B*^-" },
785 : { 10523, "B_1(L)^+" },
786 : { -10523, "B_1(L)^-" },
787 : { 20523, "B_1(H)^+" },
788 : { -20523, "B_1(H)^-" },
789 : { 525, "B*_2^+" },
790 : { -525, "B*_2^-" },
791 : { 531, "B_s^0" },
792 : { -531, "B_s~^0" },
793 : { 10531, "B*_s0^0" },
794 : { -10531, "B*_s0~^0" },
795 : { 533, "B*_s^0" },
796 : { -533, "B*_s~^0" },
797 : { 10533, "B_s1(L)^0" },
798 : { -10533, "B_s1(L)~^0" },
799 : { 20533, "B_s1(H)^0" },
800 : { -20533, "B_s1(H)~^0" },
801 : { 535, "B*_s2^0" },
802 : { -535, "B*_s2~^0" },
803 : { 541, "B_c^+" },
804 : { -541, "B_c^-" },
805 : { 10541, "B*_c0^+" },
806 : { -10541, "B*_c0^-" },
807 : { 543, "B*_c^+" },
808 : { -543, "B*_c^-" },
809 : { 10543, "B_c1(L)^+" },
810 : { -10543, "B_c1(L)^-" },
811 : { 20543, "B_c1(H)^+" },
812 : { -20543, "B_c1(H)^-" },
813 : { 545, "B*_c2^+" },
814 : { -545, "B*_c2^-" },
815 : { 551, "eta_b(1S)" },
816 : { 10551, "chi_b0(1P)" },
817 : { 100551, "eta_b(2S)" },
818 : { 110551, "chi_b0(2P)" },
819 : { 200551, "eta_b(3S)" },
820 : { 210551, "chi_b0(3P)" },
821 : { 553, "Upsilon(1S)" },
822 : { 9000553, "Upsilon(10860)" },
823 : { 10553, "h_b(1P)" },
824 : { 9010553, "Upsilon(11020)" },
825 : { 20553, "chi_b1(1P)" },
826 : { 9020553, "Upsilon(7S)" },
827 : { 30553, "Upsilon_1(1D)" },
828 : { 100553, "Upsilon(2S)" },
829 : { 110553, "h_b(2P)" },
830 : { 120553, "chi_b1(2P)" },
831 : { 130553, "Upsilon_1(2D)" },
832 : { 200553, "Upsilon(3S)" },
833 : { 210553, "h_b(3P)" },
834 : { 220553, "chi_b1(3P)" },
835 : { 300553, "Upsilon(4S)" },
836 : { 555, "chi_b2(1P)" },
837 : { 10555, "eta_b2(1D)" },
838 : { 20555, "Upsilon_2(1D)" },
839 : { 100555, "chi_b2(2P)" },
840 : { 110555, "eta_b2(2D)" },
841 : { 120555, "Upsilon_2(2D)" },
842 : { 200555, "chi_b2(3P)" },
843 : { 557, "Upsilon_3(1D)" },
844 : { 100557, "Upsilon_3(2D)" },
845 : { 611, "T^+" },
846 : { -611, "T^-" },
847 : { 613, "T*^+" },
848 : { -613, "T*^-" },
849 : { 621, "T^0" },
850 : { -621, "T~^0" },
851 : { 623, "T*^0" },
852 : { -623, "T*~^0" },
853 : { 631, "T_s^+" },
854 : { -631, "T_s^-" },
855 : { 633, "T*_s^+" },
856 : { -633, "T*_s^-" },
857 : { 641, "T_c^0" },
858 : { -641, "T_c~^0" },
859 : { 643, "T*_c^0" },
860 : { -643, "T*_c~^0" },
861 : { 651, "T_b^+" },
862 : { -651, "T_b^-" },
863 : { 653, "T*_b^+" },
864 : { -653, "T*_b^-" },
865 : { 661, "eta_t" },
866 : { 663, "theta" },
867 : { 711, "L^0" },
868 : { -711, "L~^0" },
869 : { 713, "L*^0" },
870 : { -713, "L*~^0" },
871 : { 721, "L^-" },
872 : { -721, "L^+" },
873 : { 723, "L*^-" },
874 : { -723, "L*^+" },
875 : { 731, "L_s^0" },
876 : { -731, "L_s~^0" },
877 : { 733, "L*_s^0" },
878 : { -733, "L*_s~^0" },
879 : { 741, "L_c^-" },
880 : { -741, "L_c^+" },
881 : { 743, "L*_c^-" },
882 : { -743, "L*_c^+" },
883 : { 751, "L_b^0" },
884 : { -751, "L_b~^0" },
885 : { 753, "L*_b^0" },
886 : { -753, "L*_b~^0" },
887 : { 761, "L_t^-" },
888 : { -761, "L_t^+" },
889 : { 763, "L*_t^-" },
890 : { -763, "L*_t^+" },
891 : { 771, "eta_l" },
892 : { 773, "theta_l" },
893 : { 811, "X^+" },
894 : { -811, "X^-" },
895 : { 813, "X*^+" },
896 : { -813, "X*^-" },
897 : { 821, "X^0" },
898 : { -821, "X~^0" },
899 : { 823, "X*^0" },
900 : { -823, "X*~^0" },
901 : { 831, "X_s^+" },
902 : { -831, "X_s^-" },
903 : { 833, "X*_s^+" },
904 : { -833, "X*_s^-" },
905 : { 841, "X_c^0" },
906 : { -841, "X_c~^0" },
907 : { 843, "X*_c^0" },
908 : { -843, "X*_c~^0" },
909 : { 851, "X_b^+" },
910 : { -851, "X_b^-" },
911 : { 853, "X*_b^+" },
912 : { -853, "X*_b^-" },
913 : { 861, "X_t^0" },
914 : { -861, "X_t~^0" },
915 : { 863, "X*_t^0" },
916 : { -863, "X*_t~^0" },
917 : { 871, "X_l^+" },
918 : { -871, "X_l^-" },
919 : { 873, "X*_l^+" },
920 : { -873, "X*_l^-" },
921 : { 881, "eta_h" },
922 : { 883, "theta_H" },
923 : { 30343, "Xsd" },
924 : { -30343, "anti-Xsd" },
925 : { 30353, "Xsu" },
926 : { -30353, "anti-Xsu" },
927 : { 30363, "Xss" },
928 : { -30363, "anti-Xss" },
929 : { 30373, "Xdd" },
930 : { -30373, "anti-Xdd" },
931 : { 30383, "Xdu" },
932 : { -30383, "anti-Xdu" },
933 : { 2112, "n^0" },
934 : { -2112, "n~^0" },
935 : { 2212, "p^+" },
936 : { -2212, "p~^-" },
937 : { 12212, "N(1440)^+"},
938 : { 12112, "N(1440)^0"},
939 : { 22212, "N(1535)^+"},
940 : { 22112, "N(1535)^0"},
941 : { 32212, "N(1650)^+"},
942 : { 32112, "N(1650)^0"},
943 : { 42212, "N(1710)^+"},
944 : { 42112, "N(1710)^0"},
945 : { 1214, "N(1520)^0"},
946 : { 2124, "N(1520)^+"},
947 : { 21214, "N(1700)^0"},
948 : { 22124, "N(1700)^+"},
949 : { 31214, "N(1720)^0"},
950 : { 32124, "N(1720)^+"},
951 : { 2116, "N(1675)^0"},
952 : { 2216, "N(1675)^+"},
953 : { 12116, "N(1680)^0"},
954 : { 12216, "N(1680)^+"},
955 : { 1218, "N(2190)^0"},
956 : { 2128, "N(2190)^+" },
957 : { 1114, "Delta^-" },
958 : { -1114, "Delta~^+" },
959 : { 2114, "Delta^0" },
960 : { -2114, "Delta~^0" },
961 : { 2214, "Delta^+" },
962 : { -2214, "Delta~^-" },
963 : { 2224, "Delta^++" },
964 : { -2224, "Delta~^--" },
965 : { 31114, "Delta(1600)^-" },
966 : { 32114, "Delta(1600)^0" },
967 : { 32214, "Delta(1600)^+" },
968 : { 32224, "Delta(1600)^++" },
969 : { 1112, "Delta(1620)^-" },
970 : { 1212, "Delta(1620)^0" },
971 : { 2122, "Delta(1620)^+" },
972 : { 2222, "Delta(1620)^++" },
973 : { 11114, "Delta(1700)^-" },
974 : { 12114, "Delta(1700)^0" },
975 : { 12214, "Delta(1700)^+" },
976 : { 12224, "Delta(1700)^++" },
977 : { 1116, "Delta(1905)^-" },
978 : { 1216, "Delta(1905)^0" },
979 : { 2126, "Delta(1905)^+" },
980 : { 2226, "Delta(1905)^++" },
981 : { 21112, "Delta(1910)^-" },
982 : { 21212, "Delta(1910)^0" },
983 : { 22122, "Delta(1910)^+" },
984 : { 22222, "Delta(1910)^++" },
985 : { 21114, "Delta(1920)^-" },
986 : { 22114, "Delta(1920)^0" },
987 : { 22214, "Delta(1920)^+" },
988 : { 22224, "Delta(1920)^++" },
989 : { 11116, "Delta(1930)^-" },
990 : { 11216, "Delta(1930)^0" },
991 : { 12126, "Delta(1930)^+" },
992 : { 12226, "Delta(1930)^++" },
993 : { 1118, "Delta(1950)^-" },
994 : { 2118, "Delta(1950)^0" },
995 : { 2218, "Delta(1950)^+" },
996 : { 2228, "Delta(1950)^++" },
997 : { 3122, "Lambda^0" },
998 : { -3122, "Lambda~^0" },
999 : { 13122, "Lambda(1405)^0" },
1000 : { -13122, "Lambda~(1405)^0" },
1001 : { 23122, "Lambda(1600)^0" },
1002 : { -23122, "Lambda~(1600)^0" },
1003 : { 33122, "Lambda(1670)^0" },
1004 : { -33122, "Lambda~(1670)^0" },
1005 : { 43122, "Lambda(1800)^0" },
1006 : { -43122, "Lambda~(1800)^0" },
1007 : { 53122, "Lambda(1810)^0" },
1008 : { -53122, "Lambda~(1810)^0" },
1009 : { 3124, "Lambda(1520)^0" },
1010 : { -3124, "Lambda~(1520)^0" },
1011 : { 13124, "Lambda(1690)^0" },
1012 : { -13124, "Lambda~(1690)^0" },
1013 : { 23124, "Lambda(1890)^0" },
1014 : { -23124, "Lambda~(1890)^0" },
1015 : { 3126, "Lambda(1820)^0" },
1016 : { -3126, "Lambda~(1820)^0" },
1017 : { 13126, "Lambda(1830)^0" },
1018 : { -13126, "Lambda~(1830)^0" },
1019 : { 23126, "Lambda(2110)^0" },
1020 : { -23126, "Lambda~(2110)^0" },
1021 : { 3128, "Lambda(2100)^0" },
1022 : { -3128, "Lambda~(2100)^0" },
1023 : { 3112, "Sigma^-" },
1024 : { -3112, "Sigma~^+" },
1025 : { 3212, "Sigma^0" },
1026 : { -3212, "Sigma~^0" },
1027 : { 3222, "Sigma^+" },
1028 : { -3222, "Sigma~^-" },
1029 : { 13222, "Sigma(1660)^+" },
1030 : { -13222, "Sigma~(1660)^+" },
1031 : { 13212, "Sigma(1660)^0" },
1032 : { -13212, "Sigma~(1660)^0" },
1033 : { 13112, "Sigma(1660)^-" },
1034 : { -13112, "Sigma~(1660)^-" },
1035 : { 23112, "Sigma(1750)^-" },
1036 : { -23112, "Sigma~(1750)^-" },
1037 : { 23212, "Sigma(1750)^0" },
1038 : { -23212, "Sigma~(1750)^0" },
1039 : { 23222, "Sigma(1750)^+" },
1040 : { -23222, "Sigma~(1750)^+" },
1041 : { 3114, "Sigma*^-" },
1042 : { -3114, "Sigma*~^+" },
1043 : { 3214, "Sigma*^0" },
1044 : { -3214, "Sigma*~^0" },
1045 : { 3224, "Sigma*^+" },
1046 : { -3224, "Sigma*~^-" },
1047 : { 13224, "Sigma(1670)^+" },
1048 : { -13224, "Sigma~(1670)^+" },
1049 : { 13214, "Sigma(1670)^0" },
1050 : { -13214, "Sigma~(1670)^0" },
1051 : { 13114, "Sigma(1670)^-" },
1052 : { -13114, "Sigma~(1670)^-" },
1053 : { 23224, "Sigma(1940)^+" },
1054 : { -23224, "Sigma~(1940)^+" },
1055 : { 23214, "Sigma(1940)^0" },
1056 : { -23214, "Sigma~(1940)^0" },
1057 : { 23114, "Sigma(1940)^-" },
1058 : { -23114, "Sigma~(1940)^-" },
1059 : { 3226, "Sigma(1775)^+" },
1060 : { -3226, "Sigma~(1775)^+" },
1061 : { 3216, "Sigma(1775)^0" },
1062 : { -3216, "Sigma~(1775)^0" },
1063 : { 3116, "Sigma(1775)^-" },
1064 : { -3116, "Sigma~(1775)^-" },
1065 : { 13226, "Sigma(1915)^+" },
1066 : { -13226, "Sigma~(1915)^+" },
1067 : { 13216, "Sigma(1915)^0" },
1068 : { -13216, "Sigma~(1915)^0" },
1069 : { 13116, "Sigma(1915)^-" },
1070 : { -13116, "Sigma~(1915)^-" },
1071 : { 3228, "Sigma(2030)^+" },
1072 : { -3228, "Sigma~(2030)^+" },
1073 : { 3218, "Sigma(2030)^0" },
1074 : { -3218, "Sigma~(2030)^0" },
1075 : { 3118, "Sigma(2030)^-" },
1076 : { -3118, "Sigma~(2030)^-" },
1077 : { 3312, "Xi^-" },
1078 : { -3312, "Xi~^+" },
1079 : { 3322, "Xi^0" },
1080 : { -3322, "Xi~^0" },
1081 : { 3314, "Xi*^-" },
1082 : { -3314, "Xi*~^+" },
1083 : { 3324, "Xi*^0" },
1084 : { -3324, "Xi*~^0" },
1085 : { 13314, "Xi(1820)^-" },
1086 : { -13314, "Xi(1820)~^+" },
1087 : { 13324, "Xi(1820)^0" },
1088 : { -13324, "Xi(1820)~^0" },
1089 : { 3334, "Omega^-" },
1090 : { -3334, "Omega~^+" },
1091 : { 4112, "Sigma_c^0" },
1092 : { -4112, "Sigma_c~^0" },
1093 : { 4114, "Sigma*_c^0" },
1094 : { -4114, "Sigma*_c~^0" },
1095 : { 4122, "Lambda_c^+" },
1096 : { -4122, "Lambda_c~^-" },
1097 : { 14122, "Lambda_c(2593)^+" },
1098 : { -14122, "Lambda_c~(2593)^-" },
1099 : { 14124, "Lambda_c(2625)^+" },
1100 : { -14124, "Lambda_c~(2625)^-" },
1101 : { 4132, "Xi_c^0" },
1102 : { -4132, "Xi_c~^0" },
1103 : { 4212, "Sigma_c^+" },
1104 : { -4212, "Sigma_c~^-" },
1105 : { 4214, "Sigma*_c^+" },
1106 : { -4214, "Sigma*_c~^-" },
1107 : { 4222, "Sigma_c^++" },
1108 : { -4222, "Sigma_c~^--" },
1109 : { 4224, "Sigma*_c^++" },
1110 : { -4224, "Sigma*_c~^--" },
1111 : { 4232, "Xi_c^+" },
1112 : { -4232, "Xi_c~^-" },
1113 : { 4312, "Xi'_c^0" },
1114 : { -4312, "Xi'_c~^0" },
1115 : { 4314, "Xi*_c^0" },
1116 : { -4314, "Xi*_c~^0" },
1117 : { 4322, "Xi'_c^+" },
1118 : { -4322, "Xi'_c~^-" },
1119 : { 4324, "Xi*_c^+" },
1120 : { -4324, "Xi*_c~^-" },
1121 : { 4332, "Omega_c^0" },
1122 : { -4332, "Omega_c~^0" },
1123 : { 4334, "Omega*_c^0" },
1124 : { -4334, "Omega*_c~^0" },
1125 : { 4412, "Xi_cc^+" },
1126 : { -4412, "Xi_cc~^-" },
1127 : { 4414, "Xi*_cc^+" },
1128 : { -4414, "Xi*_cc~^-" },
1129 : { 4422, "Xi_cc^++" },
1130 : { -4422, "Xi_cc~^--" },
1131 : { 4424, "Xi*_cc^++" },
1132 : { -4424, "Xi*_cc~^--" },
1133 : { 4432, "Omega_cc^+" },
1134 : { -4432, "Omega_cc~^-" },
1135 : { 4434, "Omega*_cc^+" },
1136 : { -4434, "Omega*_cc~^-" },
1137 : { 4444, "Omega*_ccc^++" },
1138 : { -4444, "Omega*_ccc~^--" },
1139 : { 5112, "Sigma_b^-" },
1140 : { -5112, "Sigma_b~^+" },
1141 : { 5114, "Sigma*_b^-" },
1142 : { -5114, "Sigma*_b~^+" },
1143 : { 5122, "Lambda_b^0" },
1144 : { -5122, "Lambda_b~^0" },
1145 : { 5132, "Xi_b^-" },
1146 : { -5132, "Xi_b~^+" },
1147 : { 5142, "Xi_bc^0" },
1148 : { -5142, "Xi_bc~^0" },
1149 : { 5212, "Sigma_b^0" },
1150 : { -5212, "Sigma_b~^0" },
1151 : { 5214, "Sigma*_b^0" },
1152 : { -5214, "Sigma*_b~^0" },
1153 : { 5222, "Sigma_b^+" },
1154 : { -5222, "Sigma_b~^-" },
1155 : { 5224, "Sigma*_b^+" },
1156 : { -5224, "Sigma*_b~^-" },
1157 : { 5232, "Xi_b^0" },
1158 : { -5232, "Xi_b~^0" },
1159 : { 5242, "Xi_bc^+" },
1160 : { -5242, "Xi_bc~^-" },
1161 : { 5312, "Xi'_b^-" },
1162 : { -5312, "Xi'_b~^+" },
1163 : { 5314, "Xi*_b^-" },
1164 : { -5314, "Xi*_b~^+" },
1165 : { 5322, "Xi'_b^0" },
1166 : { -5322, "Xi'_b~^0" },
1167 : { 5324, "Xi*_b^0" },
1168 : { -5324, "Xi*_b~^0" },
1169 : { 5332, "Omega_b^-" },
1170 : { -5332, "Omega_b~^+" },
1171 : { 5334, "Omega*_b^-" },
1172 : { -5334, "Omega*_b~^+" },
1173 : { 5342, "Omega_bc^0" },
1174 : { -5342, "Omega_bc~^0" },
1175 : { 5412, "Xi'_bc^0" },
1176 : { -5412, "Xi'_bc~^0" },
1177 : { 5414, "Xi*_bc^0" },
1178 : { -5414, "Xi*_bc~^0" },
1179 : { 5422, "Xi'_bc^+" },
1180 : { -5422, "Xi'_bc~^-" },
1181 : { 5424, "Xi*_bc^+" },
1182 : { -5424, "Xi*_bc~^-" },
1183 : { 5432, "Omega'_bc^0" },
1184 : { -5432, "Omega'_bc~^0" },
1185 : { 5434, "Omega*_bc^0" },
1186 : { -5434, "Omega*_bc~^0" },
1187 : { 5442, "Omega_bcc^+" },
1188 : { -5442, "Omega_bcc~^-" },
1189 : { 5444, "Omega*_bcc^+" },
1190 : { -5444, "Omega*_bcc~^-" },
1191 : { 5512, "Xi_bb^-" },
1192 : { -5512, "Xi_bb~^+" },
1193 : { 5514, "Xi*_bb^-" },
1194 : { -5514, "Xi*_bb~^+" },
1195 : { 5522, "Xi_bb^0" },
1196 : { -5522, "Xi_bb~^0" },
1197 : { 5524, "Xi*_bb^0" },
1198 : { -5524, "Xi*_bb~^0" },
1199 : { 5532, "Omega_bb^-" },
1200 : { -5532, "Omega_bb~^+" },
1201 : { 5534, "Omega*_bb^-" },
1202 : { -5534, "Omega*_bb~^+" },
1203 : { 5542, "Omega_bbc^0" },
1204 : { -5542, "Omega_bbc~^0" },
1205 : { 5544, "Omega*_bbc^0" },
1206 : { -5544, "Omega*_bbc~^0" },
1207 : { 5554, "Omega*_bbb^-" },
1208 : { -5554, "Omega*_bbb~^+" },
1209 : { 6112, "Sigma_t^0" },
1210 : { -6112, "Sigma_t~^0" },
1211 : { 6114, "Sigma*_t^0" },
1212 : { -6114, "Sigma*_t~^0" },
1213 : { 6122, "Lambda_t^+" },
1214 : { -6122, "Lambda_t~^-" },
1215 : { 6132, "Xi_t^0" },
1216 : { -6132, "Xi_t~^0" },
1217 : { 6142, "Xi_tc^+" },
1218 : { -6142, "Xi_tc~^-" },
1219 : { 6152, "Xi_tb^0" },
1220 : { -6152, "Xi_tb~^0" },
1221 : { 6212, "Sigma_t^+" },
1222 : { -6212, "Sigma_t~^-" },
1223 : { 6214, "Sigma*_t^+" },
1224 : { -6214, "Sigma*_t~^-" },
1225 : { 6222, "Sigma_t^++" },
1226 : { -6222, "Sigma_t~^--" },
1227 : { 6224, "Sigma*_t^++" },
1228 : { -6224, "Sigma*_t~^--" },
1229 : { 6232, "Xi_t^+" },
1230 : { -6232, "Xi_t~^-" },
1231 : { 6242, "Xi_tc^++" },
1232 : { -6242, "Xi_tc~^--" },
1233 : { 6252, "Xi_tb^+" },
1234 : { -6252, "Xi_tb~^-" },
1235 : { 6312, "Xi'_t^0" },
1236 : { -6312, "Xi'_t~^0" },
1237 : { 6314, "Xi*_t^0" },
1238 : { -6314, "Xi*_t~^0" },
1239 : { 6322, "Xi'_t^+" },
1240 : { -6322, "Xi'_t~^-" },
1241 : { 6324, "Xi*_t^+" },
1242 : { -6324, "Xi*_t~^-" },
1243 : { 6332, "Omega_t^0" },
1244 : { -6332, "Omega_t~^0" },
1245 : { 6334, "Omega*_t^0" },
1246 : { -6334, "Omega*_t~^0" },
1247 : { 6342, "Omega_tc^+" },
1248 : { -6342, "Omega_tc~^-" },
1249 : { 6352, "Omega_tb^0" },
1250 : { -6352, "Omega_tb~^0" },
1251 : { 6412, "Xi'_tc^+" },
1252 : { -6412, "Xi'_tc~^-" },
1253 : { 6414, "Xi*_tc^+" },
1254 : { -6414, "Xi*_tc~^-" },
1255 : { 6422, "Xi'_tc^++" },
1256 : { -6422, "Xi'_tc~^--" },
1257 : { 6424, "Xi*_tc^++" },
1258 : { -6424, "Xi*_tc~^--" },
1259 : { 6432, "Omega'_tc^+" },
1260 : { -6432, "Omega'_tc~^-" },
1261 : { 6434, "Omega*_tc^+" },
1262 : { -6434, "Omega*_tc~^-" },
1263 : { 6442, "Omega_tcc^++" },
1264 : { -6442, "Omega_tcc~^--" },
1265 : { 6444, "Omega*_tcc^++" },
1266 : { -6444, "Omega*_tcc~^--" },
1267 : { 6452, "Omega_tbc^+" },
1268 : { -6452, "Omega_tbc~^-" },
1269 : { 6512, "Xi'_tb^0" },
1270 : { -6512, "Xi'_tb~^0" },
1271 : { 6514, "Xi*_tb^0" },
1272 : { -6514, "Xi*_tb~^0" },
1273 : { 6522, "Xi'_tb^+" },
1274 : { -6522, "Xi'_tb~^-" },
1275 : { 6524, "Xi*_tb^+" },
1276 : { -6524, "Xi*_tb~^-" },
1277 : { 6532, "Omega'_tb^0" },
1278 : { -6532, "Omega'_tb~^0" },
1279 : { 6534, "Omega*_tb^0" },
1280 : { -6534, "Omega*_tb~^0" },
1281 : { 6542, "Omega'_tbc^+" },
1282 : { -6542, "Omega'_tbc~^-" },
1283 : { 6544, "Omega*_tbc^+" },
1284 : { -6544, "Omega*_tbc~^-" },
1285 : { 6552, "Omega_tbb^0" },
1286 : { -6552, "Omega_tbb~^0" },
1287 : { 6554, "Omega*_tbb^0" },
1288 : { -6554, "Omega*_tbb~^0" },
1289 : { 6612, "Xi_tt^+" },
1290 : { -6612, "Xi_tt~^-" },
1291 : { 6614, "Xi*_tt^+" },
1292 : { -6614, "Xi*_tt~^-" },
1293 : { 6622, "Xi_tt^++" },
1294 : { -6622, "Xi_tt~^--" },
1295 : { 6624, "Xi*_tt^++" },
1296 : { -6624, "Xi*_tt~^--" },
1297 : { 6632, "Omega_tt^+" },
1298 : { -6632, "Omega_tt~^-" },
1299 : { 6634, "Omega*_tt^+" },
1300 : { -6634, "Omega*_tt~^-" },
1301 : { 6642, "Omega_ttc^++" },
1302 : { -6642, "Omega_ttc~^--" },
1303 : { 6644, "Omega*_ttc^++" },
1304 : { -6644, "Omega*_ttc~^--" },
1305 : { 6652, "Omega_ttb^+" },
1306 : { -6652, "Omega_ttb~^-" },
1307 : { 6654, "Omega*_ttb^+" },
1308 : { -6654, "Omega*_ttb~^-" },
1309 : { 6664, "Omega*_ttt^++" },
1310 : { -6664, "Omega*_ttt~^--" },
1311 : { 7112, "Sigma_b'^-" },
1312 : { -7112, "Sigma_b'~^+" },
1313 : { 7114, "Sigma*_b'^-" },
1314 : { -7114, "Sigma*_b'~^+" },
1315 : { 7122, "Lambda_b'^0" },
1316 : { -7122, "Lambda_b'~^0" },
1317 : { 7132, "Xi_b'^-" },
1318 : { -7132, "Xi_b'~^+" },
1319 : { 7142, "Xi_b'c^0" },
1320 : { -7142, "Xi_b'c~^0" },
1321 : { 7152, "Xi_b'b^-" },
1322 : { -7152, "Xi_b'b~^+" },
1323 : { 7162, "Xi_b't^0" },
1324 : { -7162, "Xi_b't~^0" },
1325 : { 7212, "Sigma_b'^0" },
1326 : { -7212, "Sigma_b'~^0" },
1327 : { 7214, "Sigma*_b'^0" },
1328 : { -7214, "Sigma*_b'~^0" },
1329 : { 7222, "Sigma_b'^+" },
1330 : { -7222, "Sigma_b'~^-" },
1331 : { 7224, "Sigma*_b'^+" },
1332 : { -7224, "Sigma*_b'~^-" },
1333 : { 7232, "Xi_b'^0" },
1334 : { -7232, "Xi_b'~^0" },
1335 : { 7242, "Xi_b'c^+" },
1336 : { -7242, "Xi_b'c~^-" },
1337 : { 7252, "Xi_b'b^0" },
1338 : { -7252, "Xi_b'b~^0" },
1339 : { 7262, "Xi_b't^+" },
1340 : { -7262, "Xi_b't~^-" },
1341 : { 7312, "Xi'_b'^-" },
1342 : { -7312, "Xi'_b'~^+" },
1343 : { 7314, "Xi*_b'^-" },
1344 : { -7314, "Xi*_b'~^+" },
1345 : { 7322, "Xi'_b'^0" },
1346 : { -7322, "Xi'_b'~^0" },
1347 : { 7324, "Xi*_b'^0" },
1348 : { -7324, "Xi*_b'~^0" },
1349 : { 7332, "Omega'_b'^-" },
1350 : { -7332, "Omega'_b'~^+" },
1351 : { 7334, "Omega*_b'^-" },
1352 : { -7334, "Omega*_b'~^+" },
1353 : { 7342, "Omega_b'c^0" },
1354 : { -7342, "Omega_b'c~^0" },
1355 : { 7352, "Omega_b'b^-" },
1356 : { -7352, "Omega_b'b~^+" },
1357 : { 7362, "Omega_b't^0" },
1358 : { -7362, "Omega_b't~^0" },
1359 : { 7412, "Xi'_b'c^0" },
1360 : { -7412, "Xi'_b'c~^0" },
1361 : { 7414, "Xi*_b'c^0" },
1362 : { -7414, "Xi*_b'c~^0" },
1363 : { 7422, "Xi'_b'c^+" },
1364 : { -7422, "Xi'_b'c~^-" },
1365 : { 7424, "Xi*_b'c^+" },
1366 : { -7424, "Xi*_b'c~^-" },
1367 : { 7432, "Omega'_b'c^0" },
1368 : { -7432, "Omega'_b'c~^0" },
1369 : { 7434, "Omega*_b'c^0" },
1370 : { -7434, "Omega*_b'c~^0" },
1371 : { 7442, "Omega'_b'cc^+" },
1372 : { -7442, "Omega'_b'cc~^-" },
1373 : { 7444, "Omega*_b'cc^+" },
1374 : { -7444, "Omega*_b'cc~^-" },
1375 : { 7452, "Omega_b'bc^0" },
1376 : { -7452, "Omega_b'bc~^0" },
1377 : { 7462, "Omega_b'tc^+" },
1378 : { -7462, "Omega_b'tc~^-" },
1379 : { 7512, "Xi'_b'b^-" },
1380 : { -7512, "Xi'_b'b~^+" },
1381 : { 7514, "Xi*_b'b^-" },
1382 : { -7514, "Xi*_b'b~^+" },
1383 : { 7522, "Xi'_b'b^0" },
1384 : { -7522, "Xi'_b'b~^0" },
1385 : { 7524, "Xi*_b'b^0" },
1386 : { -7524, "Xi*_b'b~^0" },
1387 : { 7532, "Omega'_b'b^-" },
1388 : { -7532, "Omega'_b'b~^+" },
1389 : { 7534, "Omega*_b'b^-" },
1390 : { -7534, "Omega*_b'b~^+" },
1391 : { 7542, "Omega'_b'bc^0" },
1392 : { -7542, "Omega'_b'bc~^0" },
1393 : { 7544, "Omega*_b'bc^0" },
1394 : { -7544, "Omega*_b'bc~^0" },
1395 : { 7552, "Omega'_b'bb^-" },
1396 : { -7552, "Omega'_b'bb~^+" },
1397 : { 7554, "Omega*_b'bb^-" },
1398 : { -7554, "Omega*_b'bb~^+" },
1399 : { 7562, "Omega_b'tb^0" },
1400 : { -7562, "Omega_b'tb~^0" },
1401 : { 7612, "Xi'_b't^0" },
1402 : { -7612, "Xi'_b't~^0" },
1403 : { 7614, "Xi*_b't^0" },
1404 : { -7614, "Xi*_b't~^0" },
1405 : { 7622, "Xi'_b't^+" },
1406 : { -7622, "Xi'_b't~^-" },
1407 : { 7624, "Xi*_b't^+" },
1408 : { -7624, "Xi*_b't~^-" },
1409 : { 7632, "Omega'_b't^0" },
1410 : { -7632, "Omega'_b't~^0" },
1411 : { 7634, "Omega*_b't^0" },
1412 : { -7634, "Omega*_b't~^0" },
1413 : { 7642, "Omega'_b'tc^+" },
1414 : { -7642, "Omega'_b'tc~^-" },
1415 : { 7644, "Omega*_b'tc^+" },
1416 : { -7644, "Omega*_b'tc~^-" },
1417 : { 7652, "Omega'_b'tb^0" },
1418 : { -7652, "Omega'_b'tb~^0" },
1419 : { 7654, "Omega*_b'tb^0" },
1420 : { -7654, "Omega*_b'tb~^0" },
1421 : { 7662, "Omega'_b'tt^+" },
1422 : { -7662, "Omega'_b'tt~^-" },
1423 : { 7664, "Omega*_b'tt^+" },
1424 : { -7664, "Omega*_b'tt~^-" },
1425 : { 7712, "Xi'_b'b'^-" },
1426 : { -7712, "Xi'_b'b'~^+" },
1427 : { 7714, "Xi*_b'b'^-" },
1428 : { -7714, "Xi*_b'b'~^+" },
1429 : { 7722, "Xi'_b'b'^0" },
1430 : { -7722, "Xi'_b'b'~^0" },
1431 : { 7724, "Xi*_b'b'^0" },
1432 : { -7724, "Xi*_b'b'~^0" },
1433 : { 7732, "Omega'_b'b'^-" },
1434 : { -7732, "Omega'_b'b'~^+" },
1435 : { 7734, "Omega*_b'b'^-" },
1436 : { -7734, "Omega*_b'b'~^+" },
1437 : { 7742, "Omega'_b'b'c^0" },
1438 : { -7742, "Omega'_b'b'c~^0" },
1439 : { 7744, "Omega*_b'b'c^0" },
1440 : { -7744, "Omega*_b'b'c~^0" },
1441 : { 7752, "Omega'_b'b'b^-" },
1442 : { -7752, "Omega'_b'b'b~^+" },
1443 : { 7754, "Omega*_b'b'b^-" },
1444 : { -7754, "Omega*_b'b'b~^+" },
1445 : { 7762, "Omega'_b'b't^0" },
1446 : { -7762, "Omega'_b'b't~^0" },
1447 : { 7764, "Omega*_b'b't^0" },
1448 : { -7764, "Omega*_b'b't~^0" },
1449 : { 7774, "Omega*_b'b'b'^-" },
1450 : { -7774, "Omega*_b'b'b'~^+" },
1451 : { 8112, "Sigma_t'^0" },
1452 : { -8112, "Sigma_t'~^0" },
1453 : { 8114, "Sigma*_t'^0" },
1454 : { -8114, "Sigma*_t'~^0" },
1455 : { 8122, "Lambda_t'^+" },
1456 : { -8122, "Lambda_t'~^-" },
1457 : { 8132, "Xi_t'^0" },
1458 : { -8132, "Xi_t'~^0" },
1459 : { 8142, "Xi_t'c^+" },
1460 : { -8142, "Xi_t'c~^-" },
1461 : { 8152, "Xi_t'b^0" },
1462 : { -8152, "Xi_t'b~^0" },
1463 : { 8162, "Xi_t't^+" },
1464 : { -8162, "Xi_t't~^-" },
1465 : { 8172, "Xi_t'b'^0" },
1466 : { -8172, "Xi_t'b'~^0" },
1467 : { 8212, "Sigma_t'^+" },
1468 : { -8212, "Sigma_t'~^-" },
1469 : { 8214, "Sigma*_t'^+" },
1470 : { -8214, "Sigma*_t'~^-" },
1471 : { 8222, "Sigma_t'^++" },
1472 : { -8222, "Sigma_t'~^--" },
1473 : { 8224, "Sigma*_t'^++" },
1474 : { -8224, "Sigma*_t'~^--" },
1475 : { 8232, "Xi_t'^+" },
1476 : { -8232, "Xi_t'~^-" },
1477 : { 8242, "Xi_t'c^++" },
1478 : { -8242, "Xi_t'c~^--" },
1479 : { 8252, "Xi_t'b^+" },
1480 : { -8252, "Xi_t'b~^-" },
1481 : { 8262, "Xi_t't^++" },
1482 : { -8262, "Xi_t't~^--" },
1483 : { 8272, "Xi_t'b'^+" },
1484 : { -8272, "Xi_t'b'~^-" },
1485 : { 8312, "Xi'_t'^0" },
1486 : { -8312, "Xi'_t'~^0" },
1487 : { 8314, "Xi*_t'^0" },
1488 : { -8314, "Xi*_t'~^0" },
1489 : { 8322, "Xi'_t'^+" },
1490 : { -8322, "Xi'_t'~^-" },
1491 : { 8324, "Xi*_t'^+" },
1492 : { -8324, "Xi*_t'~^-" },
1493 : { 8332, "Omega'_t'^0" },
1494 : { -8332, "Omega'_t'~^0" },
1495 : { 8334, "Omega*_t'^0" },
1496 : { -8334, "Omega*_t'~^0" },
1497 : { 8342, "Omega_t'c^+" },
1498 : { -8342, "Omega_t'c~^-" },
1499 : { 8352, "Omega_t'b^0" },
1500 : { -8352, "Omega_t'b~^0" },
1501 : { 8362, "Omega_t't^+" },
1502 : { -8362, "Omega_t't~^-" },
1503 : { 8372, "Omega_t'b'^0" },
1504 : { -8372, "Omega_t'b'~^0" },
1505 : { 8412, "Xi'_t'c^+" },
1506 : { -8412, "Xi'_t'c~^-" },
1507 : { 8414, "Xi*_t'c^+" },
1508 : { -8414, "Xi*_t'c~^-" },
1509 : { 8422, "Xi'_t'c^++" },
1510 : { -8422, "Xi'_t'c~^--" },
1511 : { 8424, "Xi*_t'c^++" },
1512 : { -8424, "Xi*_t'c~^--" },
1513 : { 8432, "Omega'_t'c^+" },
1514 : { -8432, "Omega'_t'c~^-" },
1515 : { 8434, "Omega*_t'c^+" },
1516 : { -8434, "Omega*_t'c~^-" },
1517 : { 8442, "Omega'_t'cc^++" },
1518 : { -8442, "Omega'_t'cc~^--" },
1519 : { 8444, "Omega*_t'cc^++" },
1520 : { -8444, "Omega*_t'cc~^--" },
1521 : { 8452, "Omega_t'bc^+" },
1522 : { -8452, "Omega_t'bc~^-" },
1523 : { 8462, "Omega_t'tc^++" },
1524 : { -8462, "Omega_t'tc~^--" },
1525 : { 8472, "Omega_t'b'c ^+" },
1526 : { -8472, "Omega_t'b'c ~^-" },
1527 : { 8512, "Xi'_t'b^0" },
1528 : { -8512, "Xi'_t'b~^0" },
1529 : { 8514, "Xi*_t'b^0" },
1530 : { -8514, "Xi*_t'b~^0" },
1531 : { 8522, "Xi'_t'b^+" },
1532 : { -8522, "Xi'_t'b~^-" },
1533 : { 8524, "Xi*_t'b^+" },
1534 : { -8524, "Xi*_t'b~^-" },
1535 : { 8532, "Omega'_t'b^0" },
1536 : { -8532, "Omega'_t'b~^0" },
1537 : { 8534, "Omega*_t'b^0" },
1538 : { -8534, "Omega*_t'b~^0" },
1539 : { 8542, "Omega'_t'bc^+" },
1540 : { -8542, "Omega'_t'bc~^-" },
1541 : { 8544, "Omega*_t'bc^+" },
1542 : { -8544, "Omega*_t'bc~^-" },
1543 : { 8552, "Omega'_t'bb^0" },
1544 : { -8552, "Omega'_t'bb~^0" },
1545 : { 8554, "Omega*_t'bb^0" },
1546 : { -8554, "Omega*_t'bb~^0" },
1547 : { 8562, "Omega_t'tb^+" },
1548 : { -8562, "Omega_t'tb~^-" },
1549 : { 8572, "Omega_t'b'b ^0" },
1550 : { -8572, "Omega_t'b'b ~^0" },
1551 : { 8612, "Xi'_t't^+" },
1552 : { -8612, "Xi'_t't~^-" },
1553 : { 8614, "Xi*_t't^+" },
1554 : { -8614, "Xi*_t't~^-" },
1555 : { 8622, "Xi'_t't^++" },
1556 : { -8622, "Xi'_t't~^--" },
1557 : { 8624, "Xi*_t't^++" },
1558 : { -8624, "Xi*_t't~^--" },
1559 : { 8632, "Omega'_t't^+" },
1560 : { -8632, "Omega'_t't~^-" },
1561 : { 8634, "Omega*_t't^+" },
1562 : { -8634, "Omega*_t't~^-" },
1563 : { 8642, "Omega'_t'tc^++" },
1564 : { -8642, "Omega'_t'tc~^--" },
1565 : { 8644, "Omega*_t'tc^++" },
1566 : { -8644, "Omega*_t'tc~^--" },
1567 : { 8652, "Omega'_t'tb^+" },
1568 : { -8652, "Omega'_t'tb~^-" },
1569 : { 8654, "Omega*_t'tb^+" },
1570 : { -8654, "Omega*_t'tb~^-" },
1571 : { 8662, "Omega'_t'tt^++" },
1572 : { -8662, "Omega'_t'tt~^--" },
1573 : { 8664, "Omega*_t'tt^++" },
1574 : { -8664, "Omega*_t'tt~^--" },
1575 : { 8672, "Omega_t'b't ^+" },
1576 : { -8672, "Omega_t'b't ~^-" },
1577 : { 8712, "Xi'_t'b'^0" },
1578 : { -8712, "Xi'_t'b'~^0" },
1579 : { 8714, "Xi*_t'b'^0" },
1580 : { -8714, "Xi*_t'b'~^0" },
1581 : { 8722, "Xi'_t'b'^+" },
1582 : { -8722, "Xi'_t'b'~^-" },
1583 : { 8724, "Xi*_t'b'^+" },
1584 : { -8724, "Xi*_t'b'~^-" },
1585 : { 8732, "Omega'_t'b'^0" },
1586 : { -8732, "Omega'_t'b'~^0" },
1587 : { 8734, "Omega*_t'b'^0" },
1588 : { -8734, "Omega*_t'b'~^0" },
1589 : { 8742, "Omega'_t'b'c^+" },
1590 : { -8742, "Omega'_t'b'c~^-" },
1591 : { 8744, "Omega*_t'b'c^+" },
1592 : { -8744, "Omega*_t'b'c~^-" },
1593 : { 8752, "Omega'_t'b'b^0" },
1594 : { -8752, "Omega'_t'b'b~^0" },
1595 : { 8754, "Omega*_t'b'b^0" },
1596 : { -8754, "Omega*_t'b'b~^0" },
1597 : { 8762, "Omega'_t'b't^+" },
1598 : { -8762, "Omega'_t'b't~^-" },
1599 : { 8764, "Omega*_t'b't^+" },
1600 : { -8764, "Omega*_t'b't~^-" },
1601 : { 8772, "Omega'_t'b'b'^0" },
1602 : { -8772, "Omega'_t'b'b'~^0" },
1603 : { 8774, "Omega*_t'b'b'^0" },
1604 : { -8774, "Omega*_t'b'b'~^0" },
1605 : { 8812, "Xi'_t't'^+" },
1606 : { -8812, "Xi'_t't'~^-" },
1607 : { 8814, "Xi*_t't'^+" },
1608 : { -8814, "Xi*_t't'~^-" },
1609 : { 8822, "Xi'_t't'^++" },
1610 : { -8822, "Xi'_t't'~^--" },
1611 : { 8824, "Xi*_t't'^++" },
1612 : { -8824, "Xi*_t't'~^--" },
1613 : { 8832, "Omega'_t't'^+" },
1614 : { -8832, "Omega'_t't'~^-" },
1615 : { 8834, "Omega*_t't'^+" },
1616 : { -8834, "Omega*_t't'~^-" },
1617 : { 8842, "Omega'_t't'c^++" },
1618 : { -8842, "Omega'_t't'c~^--" },
1619 : { 8844, "Omega*_t't'c^++" },
1620 : { -8844, "Omega*_t't'c~^--" },
1621 : { 8852, "Omega'_t't'b^+" },
1622 : { -8852, "Omega'_t't'b~^-" },
1623 : { 8854, "Omega*_t't'b^+" },
1624 : { -8854, "Omega*_t't'b~^-" },
1625 : { 8862, "Omega'_t't't^++" },
1626 : { -8862, "Omega'_t't't~^--" },
1627 : { 8864, "Omega*_t't't^++" },
1628 : { -8864, "Omega*_t't't~^--" },
1629 : { 8872, "Omega'_t't'b'^+" },
1630 : { -8872, "Omega'_t't'b'~^-" },
1631 : { 8874, "Omega*_t't'b'^+" },
1632 : { -8874, "Omega*_t't'b'~^-" },
1633 : { 8884, "Omega*_t't't'^++" },
1634 : { -8884, "Omega*_t't't'~^--" },
1635 : { 9221132, "Theta^+" },
1636 : { 9331122, "Phi^--" },
1637 : { 1000993, "R_~gg^0" },
1638 : { 1009113, "R_~gd~d^0" },
1639 : { 1009213, "R_~gu~d^+" },
1640 : { 1009223, "R_~gu~u^0" },
1641 : { 1009313, "R_~gd~s^0" },
1642 : { 1009323, "R_~gu~s^+" },
1643 : { 1009333, "R_~gs~s^0" },
1644 : { 1091114, "R_~gddd^-" },
1645 : { 1092114, "R_~gudd^0" },
1646 : { 1092214, "R_~guud^+" },
1647 : { 1092224, "R_~guuu^++" },
1648 : { 1093114, "R_~gsdd^-" },
1649 : { 1093214, "R_~gsud^0" },
1650 : { 1093224, "R_~gsuu^+" },
1651 : { 1093314, "R_~gssd^-" },
1652 : { 1093324, "R_~gssu^0" },
1653 : { 1093334, "R_~gsss^-" },
1654 : { 1000612, "R_~t_1~d^+" },
1655 : { 1000622, "R_~t_1~u^0" },
1656 : { 1000632, "R_~t_1~s^+" },
1657 : { 1000642, "R_~t_1~c^0" },
1658 : { 1000652, "R_~t_1~b^+" },
1659 : { 1006113, "R_~t_1dd_1^0" },
1660 : { 1006211, "R_~t_1ud_0^+" },
1661 : { 1006213, "R_~t_1ud_1^+" },
1662 : { 1006223, "R_~t_1uu_1^++" },
1663 : { 1006311, "R_~t_1sd_0^0" },
1664 : { 1006313, "R_~t_1sd_1^0" },
1665 : { 1006321, "R_~t_1su_0^+" },
1666 : { 1006323, "R_~t_1su_1^+" },
1667 : { 1006333, "R_~t_1ss_1^0" },
1668 : { 1000010010, "Hydrogen" },
1669 : { 1000010020, "Deuterium" },
1670 : {-1000010020, "Anti-Deuterium" },
1671 : { 1000010030, "Tritium" },
1672 : {-1000010030, "Anti-Tritium" },
1673 : { 1000020030, "He3" },
1674 : {-1000020030, "Anti-He3" },
1675 : { 1000020040, "Alpha-(He4)" },
1676 : {-1000020040, "Anti-Alpha-(He4)" }
1677 : };
1678 :
1679 : int lnames = sizeof(SNames)/sizeof(SNames[0]);
1680 0 : for( int k=0; k!=lnames; ++k) {
1681 0 : m.insert( std::make_pair( SNames[k].pid, std::string(SNames[k].pname)) );
1682 0 : nameMap.insert( std::make_pair( std::string(SNames[k].pname), SNames[k].pid ) );
1683 : }
1684 0 : static ParticleNameMap mymaps(m,nameMap);
1685 :
1686 0 : return mymaps;
1687 : } // ParticleNameInit()
1688 :
1689 0 : void writeParticleNameLine( int i, std::ostream & os )
1690 : {
1691 0 : if ( validParticleName( i ) ) {
1692 0 : std::string pn = particleName( i );
1693 0 : int pid = particleName( pn );
1694 0 : os << " PDT number: " ;
1695 0 : os.width(12);
1696 0 : os << i << " PDT name: " << pn << std::endl;
1697 : // verify reverse lookup
1698 0 : if( pid != i ) {
1699 : os << "HepPID::writeParticleNameLine ERROR: "
1700 0 : << " got " << pid << " instead of " << i << std::endl;
1701 : }
1702 : }
1703 0 : return;
1704 : } // writeParticleNameLine()
1705 :
1706 0 : std::string dyonName( const int & pid )
1707 : {
1708 0 : std::ostringstream pn;
1709 0 : pn << "Dyon^" << digit(nq1,pid) << digit(nq2,pid) << digit(nq3,pid);
1710 0 : if ( digit(nl,pid) == 1 ) {
1711 0 : if ( pid > 0 ) {
1712 0 : pn << "++";
1713 : } else {
1714 0 : pn << "--";
1715 : }
1716 0 : } else if ( digit(nl,pid) == 2 ) {
1717 0 : if ( pid > 0 ) {
1718 0 : pn << "+-";
1719 : } else {
1720 0 : pn << "-+";
1721 : }
1722 : }
1723 0 : return pn.str();
1724 0 : }
1725 :
1726 0 : std::string qballName( const int & pid )
1727 : {
1728 0 : std::ostringstream pn;
1729 0 : pn << "QBall^" << ((abspid(pid)/100)%1000) << "." << digit(nq3,pid);
1730 0 : if ( pid > 0 ) {
1731 0 : pn << "+";
1732 : } else {
1733 0 : pn << "-";
1734 : }
1735 0 : return pn.str();
1736 0 : }
1737 :
1738 0 : int checkForSpecialParticle( const std::string & s )
1739 : {
1740 : int chg, chg2, id;
1741 : int m = 1;
1742 0 : int len = s.length();
1743 0 : if( s.substr(0,4) == "Dyon" ) {
1744 0 : std::istringstream var1(s.substr(5,3).c_str());
1745 0 : var1 >> chg;
1746 0 : if( s.substr(len-2,1) == "+" && s.substr(len-1,1) == "-") m = 2;
1747 0 : if( s.substr(len-2,1) == "-" && s.substr(len-1,1) == "+") m = 2;
1748 0 : id = 4100000 + m*10000 + chg*10;
1749 0 : if( s.substr(len-2,1) == "-" ) id = -id;
1750 : return id;
1751 0 : }
1752 0 : if( s.substr(0,5) == "QBall" ) {
1753 0 : int rem = len - 9;
1754 0 : std::istringstream var2(s.substr(6,rem).c_str());
1755 0 : var2 >> chg;
1756 0 : std::istringstream var3(s.substr(7+rem,1).c_str());
1757 0 : var3 >> chg2;
1758 0 : id = 10000000 + chg*100+chg2*10;
1759 0 : if( s.substr(len-1,1) == "-" ) id = -id;
1760 : return id;
1761 0 : }
1762 : return 0;
1763 : }
1764 :
1765 : } // unnamed namespace
1766 :
1767 : //
1768 : // getPartcleIdMap is the ONLY function allowed to call ParticleNameInit
1769 : //
1770 0 : ParticleNameMap const & getParticleNameMap()
1771 : {
1772 0 : static ParticleNameMap const & pmap = ParticleNameInit();
1773 0 : return pmap;
1774 : } // getPartcleIdMap()
1775 :
1776 0 : bool validParticleName( const int & pid )
1777 : {
1778 : // check for the special cases first
1779 0 : if ( isDyon(pid) ) return true;
1780 0 : if ( isQBall(pid) ) return true;
1781 :
1782 0 : static ParticleNameMap const & pmap = getParticleNameMap();
1783 :
1784 0 : ParticleNameMap::idIterator const cit = pmap.find( pid );
1785 : return ( cit == pmap.end() )
1786 0 : ? false
1787 : : true;
1788 : } // validParticleName()
1789 :
1790 0 : bool validParticleName( const std::string & s )
1791 : {
1792 0 : static ParticleNameMap const & pmap = getParticleNameMap();
1793 0 : ParticleNameMap::nameIterator const cit = pmap.findString( s );
1794 : return ( cit == pmap.endLookupMap() )
1795 0 : ? false
1796 0 : : true;
1797 : } // validParticleName()
1798 :
1799 0 : std::string particleName( const int & pid )
1800 : {
1801 : // check for the special cases first
1802 0 : if ( isDyon(pid) ) return dyonName(pid);
1803 0 : if ( isQBall(pid) ) return qballName(pid);
1804 :
1805 0 : static ParticleNameMap const & pmap = getParticleNameMap();
1806 :
1807 0 : ParticleNameMap::idIterator const cit = pmap.find( pid );
1808 : return ( cit == pmap.end() )
1809 : ? std::string("not defined")
1810 0 : : cit->second;
1811 : } // particleName()
1812 :
1813 0 : int particleName( const std::string & s )
1814 : {
1815 0 : static ParticleNameMap const & pmap = getParticleNameMap();
1816 0 : ParticleNameMap::nameIterator const cit = pmap.findString( s );
1817 : return ( cit == pmap.endLookupMap() )
1818 0 : ? checkForSpecialParticle(s)
1819 0 : : cit->second;
1820 : } // particleName()
1821 :
1822 : //
1823 : // list all the defined names
1824 : //
1825 0 : void listParticleNames( std::ostream & os )
1826 : {
1827 0 : writeVersion( os );
1828 : os << " HepPID Particle List" << std::endl;
1829 : os << std::endl;
1830 :
1831 : // simple: static PartcleIdMap const & pmap = getPartcleIdMap();
1832 : // simple: for( PartcleIdMap::const_iterator cit = pmap.begin(), mend = pmap.end();
1833 : // simple: cit != mend;
1834 : // simple: ++cit ) {
1835 : // simple: os << " PDT number: " ;
1836 : // simple: os.width(12);
1837 : // simple: os << cit->first << " PDT name: " << cit->second << std::endl;
1838 : // simple: }
1839 : int id, i, j, q1, q2, q3, l, m, n;
1840 : // special cases
1841 0 : for( id=1; id<101; ++id) {
1842 0 : writeParticleNameLine( id, os );
1843 0 : writeParticleNameLine( -id, os );
1844 : }
1845 0 : for( i=11; i<1000; ++i) {
1846 0 : id = i*10;
1847 0 : writeParticleNameLine( id, os );
1848 0 : writeParticleNameLine( -id, os );
1849 : }
1850 : // SUSY
1851 0 : for( n=1; n<3; ++n) {
1852 0 : for( q1=0; q1<10; ++q1) {
1853 0 : for( j=0; j<10; ++j) {
1854 0 : id = 1000000*n+10*q1+j;
1855 0 : writeParticleNameLine( id, os );
1856 0 : writeParticleNameLine( -id, os );
1857 : }
1858 : }
1859 : }
1860 : // technicolor, etc.
1861 0 : for( n=3; n<7; ++n) {
1862 0 : for( q2=0; q2<10; ++q2) {
1863 0 : for( q1=0; q1<10; ++q1) {
1864 0 : for( j=0; j<10; ++j) {
1865 0 : for( m=0; m<10; ++m) {
1866 0 : for( l=0; l<7; ++l) {
1867 0 : id = 1000000*n+100000*m+10000*l+100*q2+10*q1+j;
1868 : // save dyons for later
1869 0 : if( !(n == 4 && m == 1) ) {
1870 0 : writeParticleNameLine( id, os );
1871 0 : writeParticleNameLine( -id, os );
1872 : }
1873 : }
1874 : }
1875 : }
1876 : }
1877 : }
1878 : }
1879 : // R-hadrons
1880 0 : for( q3=0; q3<10; ++q3) {
1881 0 : for( q2=1; q2<10; ++q2) {
1882 0 : for( q1=1; q1<10; ++q1) {
1883 0 : for( j=1; j<5; ++j) {
1884 0 : id = 1000000+1000*q3+100*q2+10*q1+j;
1885 0 : writeParticleNameLine( id, os );
1886 0 : if(q3 > 0 ) id = 1000000+90000+1000*q3+100*q2+10*q1+j;
1887 0 : writeParticleNameLine( id, os );
1888 : }
1889 : }
1890 : }
1891 : }
1892 : // miscellaneous generator particles
1893 0 : for( l=0; l<9; ++l) {
1894 0 : for( i=1; i<100; ++i) {
1895 0 : id = 9900000+10000*l+i;
1896 0 : writeParticleNameLine( id, os );
1897 0 : writeParticleNameLine( -id, os );
1898 : }
1899 0 : for( q3=0; q3<10; ++q3) {
1900 0 : for( q2=1; q2<10; ++q2) {
1901 0 : for( q1=1; q1<10; ++q1) {
1902 0 : for( j=0; j<10; ++j) {
1903 0 : id = 9900000+10000*l+1000*q3+100*q2+10*q1+j;
1904 0 : writeParticleNameLine( id, os );
1905 0 : writeParticleNameLine( -id, os );
1906 : }
1907 : }
1908 : }
1909 : }
1910 : }
1911 : // diquark
1912 0 : for( i=11; i<100; ++i) {
1913 0 : for( j=0; j<10; ++j) {
1914 0 : id = 100*i+j;
1915 0 : writeParticleNameLine( id, os );
1916 0 : writeParticleNameLine( -id, os );
1917 : }
1918 : }
1919 : // mesons
1920 0 : for( q2=1; q2<10; ++q2) {
1921 0 : for( q1=1; q1<10; ++q1) {
1922 0 : for( j=1; j<10; ++j) {
1923 0 : for( m=0; m<9; ++m) {
1924 0 : for( l=0; l<10; ++l) {
1925 0 : id = 100000*m+10000*l+100*q2+10*q1+j;
1926 0 : writeParticleNameLine( id, os );
1927 0 : writeParticleNameLine( -id, os );
1928 0 : id = 9000000+100000*m+10000*l+100*q2+10*q1+j;
1929 0 : writeParticleNameLine( id, os );
1930 0 : writeParticleNameLine( -id, os );
1931 : }
1932 : }
1933 : }
1934 : }
1935 : }
1936 : // baryons
1937 0 : for( q3=1; q3<10; ++q3) {
1938 0 : for( q2=1; q2<10; ++q2) {
1939 0 : for( q1=1; q1<10; ++q1) {
1940 0 : for( j=1; j<10; ++j) {
1941 0 : for( m=0; m<9; ++m) {
1942 0 : id = 10000*m+1000*q3+100*q2+10*q1+j;
1943 0 : writeParticleNameLine( id, os );
1944 0 : writeParticleNameLine( -id, os );
1945 : }
1946 : }
1947 : }
1948 : }
1949 : }
1950 : // pentaquarks
1951 0 : for( l=1; l<9; ++l ) {
1952 0 : for ( m=1; m<9; ++m ) {
1953 0 : for( q3=1; q3<9; ++q3) {
1954 0 : for( q2=1; q2<9; ++q2) {
1955 0 : for( q1=1; q1<9; ++q1) {
1956 0 : id = 9*1000000+l*100000+m*10000+1000*q3+100*q2+10*q1+2;
1957 0 : writeParticleNameLine( id, os );
1958 0 : writeParticleNameLine( -id, os );
1959 : }
1960 : }
1961 : }
1962 : }
1963 : }
1964 : // ions
1965 0 : for( i=1; i<3; ++i) {
1966 0 : for( m=1; m<5; ++m) {
1967 0 : id = 1000000000+10*m+10000*i;
1968 0 : writeParticleNameLine( id, os );
1969 0 : writeParticleNameLine( -id, os );
1970 : }
1971 : }
1972 : // some Dyons
1973 0 : for( q3=0; q3<2; ++q3) {
1974 0 : for( q2=0; q2<4; ++q2) {
1975 0 : for( q1=0; q1<10; ++q1) {
1976 0 : ++q1;
1977 0 : id = 4110000+1000*q3+100*q2+10*q1;
1978 0 : writeParticleNameLine( id, os );
1979 0 : writeParticleNameLine( -id, os );
1980 0 : id = 4120000+1000*q3+100*q2+10*q1;
1981 0 : writeParticleNameLine( id, os );
1982 0 : writeParticleNameLine( -id, os );
1983 : }
1984 : }
1985 : }
1986 : // a few QBalls
1987 0 : for( i=1; i<199; ++i ) {
1988 0 : for( m=1; m<10; ) {
1989 0 : id = 10000000+10*m+100*i;
1990 0 : writeParticleNameLine( id, os );
1991 0 : writeParticleNameLine( -id, os );
1992 0 : m += 3;
1993 : }
1994 : i += 11;
1995 : }
1996 0 : return;
1997 : } // listParticleNames()
1998 :
1999 : } // HepPID
|