LCOV - code coverage report
Current view: top level - src/magneticField/turbulentField - PlaneWaveTurbulence.cpp (source / functions) Hit Total Coverage
Test: coverage.info.cleaned Lines: 46 48 95.8 %
Date: 2024-04-29 14:43:01 Functions: 2 2 100.0 %

          Line data    Source code
       1             : // This file contains an implementation of a vectorized cosine, which
       2             : // is based in part on the implementations in the library "SLEEF" by
       3             : // Naoki Shibata. SLEEF was used under the Boost Software License,
       4             : // Version 1.0. The original source file contained the following
       5             : // copyright notice:
       6             : //
       7             : //   //          Copyright Naoki Shibata 2010 - 2018.
       8             : //   // Distributed under the Boost Software License, Version 1.0.
       9             : //   //    (See accompanying file LICENSE.txt or copy at
      10             : //   //          http://www.boost.org/LICENSE_1_0.txt)
      11             : //
      12             : // SLEEF was used under the following license, which is not necessarily the
      13             : // license that applies to this file:
      14             : //
      15             : //         Boost Software License - Version 1.0 - August 17th, 2003
      16             : //
      17             : //         Permission is hereby granted, free of charge, to any person or
      18             : //         organization obtaining a copy of the software and accompanying
      19             : //         documentation covered by this license (the "Software") to use,
      20             : //         reproduce, display, distribute, execute, and transmit the Software,
      21             : //         and to prepare derivative works of the Software, and to permit
      22             : //         third-parties to whom the Software is furnished to do so, all subject
      23             : //         to the following:
      24             : //
      25             : //         The copyright notices in the Software and this entire statement,
      26             : //         including the above license grant, this restriction and the following
      27             : //         disclaimer, must be included in all copies of the Software, in whole
      28             : //         or in part, and all derivative works of the Software, unless such
      29             : //         copies or derivative works are solely in the form of
      30             : //         machine-executable object code generated by a source language
      31             : //         processor.
      32             : //
      33             : //         THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
      34             : //         EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
      35             : //         MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
      36             : //         NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
      37             : //         DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
      38             : //         LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
      39             : //         OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
      40             : //         THE SOFTWARE.
      41             : 
      42             : #include "crpropa/magneticField/turbulentField/PlaneWaveTurbulence.h"
      43             : #include "crpropa/GridTools.h"
      44             : #include "crpropa/Random.h"
      45             : #include "crpropa/Units.h"
      46             : 
      47             : #include "kiss/logger.h"
      48             : 
      49             : #include <iostream>
      50             : 
      51             : #if defined(FAST_WAVES)
      52             : #if defined(__SSE__) && defined(__SSE2__) && defined(__SSE3__) && defined(__SSE4_1__) && defined(__SSE4_2__) && defined(__AVX__)
      53             : #define ENABLE_FAST_WAVES
      54             : #else
      55             : #error "FAST_WAVES is enabled, but it appears that not all required SIMD extensions are enabled in the compiler. Without these extensions, the FAST_WAVES optimization cannot be used. Please make sure that the SIMD_EXTENSIONS option in cmake matches the capabilities of your target CPU, or (if your target CPU does not support the required extensions), disable the FAST_WAVES flag in cmake."
      56             : #endif
      57             : #endif
      58             : 
      59             : 
      60             : #ifdef ENABLE_FAST_WAVES
      61             : #include <immintrin.h>
      62             : #endif
      63             : 
      64             : namespace crpropa {
      65             : #ifdef ENABLE_FAST_WAVES
      66             : // see
      67             : // https://stackoverflow.com/questions/49941645/get-sum-of-values-stored-in-m256d-with-sse-avx
      68             : double hsum_double_avx(__m256d v) {
      69             :         __m128d vlow = _mm256_castpd256_pd128(v);
      70             :         __m128d vhigh = _mm256_extractf128_pd(v, 1); // high 128
      71             :         vlow = _mm_add_pd(vlow, vhigh);              // reduce down to 128
      72             : 
      73             :         __m128d high64 = _mm_unpackhi_pd(vlow, vlow);
      74             :         return _mm_cvtsd_f64(_mm_add_sd(vlow, high64)); // reduce to scalar
      75             : }
      76             : #endif // defined(ENABLE_FAST_WAVES)
      77             : 
      78           2 : PlaneWaveTurbulence::PlaneWaveTurbulence(const TurbulenceSpectrum &spectrum,
      79           2 :                                          int Nm, int seed)
      80           2 :     : TurbulentField(spectrum), Nm(Nm) {
      81             : 
      82             : #ifdef ENABLE_FAST_WAVES
      83             :         KISS_LOG_INFO << "PlaneWaveTurbulence: Using SIMD TD13 implementation"
      84             :                       << std::endl;
      85             : 
      86             :         // There used to be a cpuid check here, to see if the cpu running
      87             :         // this code would support SIMD (SSE + AVX). However, the library providing
      88             :         // the relevant function is no longer being used, and doing this manually
      89             :         // might be a bit too much work.
      90             : #endif
      91             : 
      92           2 :         if (Nm <= 1) {
      93           0 :                 throw std::runtime_error(
      94             :                     "PlaneWaveTurbulence: Nm <= 1. Specify at least two wavemodes in "
      95           0 :                     "order to generate the k distribution properly.");
      96             :         }
      97             : 
      98           2 :         Random random;
      99           2 :         if (seed != 0)
     100           2 :                 random.seed(seed);
     101             : 
     102           2 :         double kmax = 2 * M_PI / spectrum.getLmin();
     103           2 :         double kmin = 2 * M_PI / spectrum.getLmax();
     104             : 
     105           4 :         xi = std::vector<Vector3d>(Nm, Vector3d(0.));
     106           4 :         kappa = std::vector<Vector3d>(Nm, Vector3d(0.));
     107           2 :         phi = std::vector<double>(Nm, 0.);
     108           2 :         costheta = std::vector<double>(Nm, 0.);
     109           2 :         beta = std::vector<double>(Nm, 0.);
     110           2 :         Ak = std::vector<double>(Nm, 0.);
     111           2 :         k = std::vector<double>(Nm, 0.);
     112             : 
     113           2 :         double delta = log10(kmax / kmin);
     114          22 :         for (int i = 0; i < Nm; i++) {
     115          20 :                 k[i] = pow(10, log10(kmin) + ((double)i) / ((double)(Nm - 1)) * delta);
     116             :         }
     117             : 
     118             :         // * compute Ak *
     119             : 
     120             :         double delta_k0 =
     121           2 :             (k[1] - k[0]) / k[1]; // multiply this by k[i] to get delta_k[i]
     122             :         // Note: this is probably unnecessary since it's just a factor
     123             :         // and will get normalized out anyways. It's not like this is
     124             :         // performance-sensitive code though, and I don't want to change
     125             :         // anything numerical now.
     126             : 
     127             :         // For this loop, the Ak array actually contains Gk*delta_k (ie
     128             :         // non-normalized Ak^2). Normalization happens in a second loop,
     129             :         // once the total is known.
     130             :         double Ak2_sum = 0; // sum of Ak^2 over all k
     131          22 :         for (int i = 0; i < Nm; i++) {
     132          20 :                 double k = this->k[i];
     133          20 :                 double kHat = k * spectrum.getLbendover();
     134          20 :                 double Gk = spectrum.energySpectrum(k) * (1 + kHat * kHat);     // correct different implementation in TD 13 (eq. 5, missing + 1 in the denuminators exponent)
     135          20 :                 Ak[i] = Gk * delta_k0 * k;
     136          20 :                 Ak2_sum += Ak[i];
     137             : 
     138             :                 // phi, costheta, and sintheta are for drawing vectors with
     139             :                 // uniform distribution on the unit sphere.
     140             :                 // This is similar to Random::randVector(): their t is our phi,
     141             :                 // z is costheta, and r is sintheta. Our kappa is equivalent to
     142             :                 // the return value of randVector(); however, TD13 then reuse
     143             :                 // these values to generate a random vector perpendicular to kappa.
     144          20 :                 double phi = random.randUniform(-M_PI, M_PI);
     145          20 :                 double costheta = random.randUniform(-1., 1.);
     146          20 :                 double sintheta = sqrt(1 - costheta * costheta);
     147             : 
     148          20 :                 double alpha = random.randUniform(0, 2 * M_PI);
     149          20 :                 double beta = random.randUniform(0, 2 * M_PI);
     150             : 
     151             :                 Vector3d kappa =
     152          20 :                     Vector3d(sintheta * cos(phi), sintheta * sin(phi), costheta);
     153             : 
     154             :                 // NOTE: all other variable names match the ones from the TD13 paper.
     155             :                 // However, our xi is actually their psi, and their xi isn't used at
     156             :                 // all. (Though both can be used for the polarization vector, according
     157             :                 // to the paper.) The reason for this discrepancy is that this code
     158             :                 // used to be based on the original GJ99 paper, which provided only a
     159             :                 // xi vector, and this xi happens to be almost the same as TD13's psi.
     160             :                 Vector3d xi =
     161          20 :                     Vector3d(costheta * cos(phi) * cos(alpha) + sin(phi) * sin(alpha),
     162          20 :                              costheta * sin(phi) * cos(alpha) - cos(phi) * sin(alpha),
     163          20 :                              -sintheta * cos(alpha));
     164             : 
     165             :                 this->xi[i] = xi;
     166             :                 this->kappa[i] = kappa;
     167          20 :                 this->phi[i] = phi;
     168          20 :                 this->costheta[i] = costheta;
     169          20 :                 this->beta[i] = beta;
     170             :         }
     171             : 
     172             :         // Only in this loop are the actual Ak computed and stored.
     173             :         // This two-step process is necessary in order to normalize the values
     174             :         // properly.
     175          22 :         for (int i = 0; i < Nm; i++) {
     176          20 :                 Ak[i] = sqrt(2 * Ak[i] / Ak2_sum) * spectrum.getBrms();
     177             :         }
     178             : 
     179             : #ifdef ENABLE_FAST_WAVES
     180             :         // * copy data into AVX-compatible arrays *
     181             :         //
     182             :         // AVX requires all data to be aligned to 256 bit, or 32 bytes, which is the
     183             :         // same as 4 double precision floating point numbers. Since support for
     184             :         // alignments this big seems to be somewhat tentative in C++ allocators,
     185             :         // we're aligning them manually by allocating a normal double array, and
     186             :         // then computing the offset to the first value with the correct alignment.
     187             :         // This is a little bit of work, so instead of doing it separately for each
     188             :         // of the individual data arrays, we're doing it once for one big array that
     189             :         // all of the component arrays get packed into.
     190             :         //
     191             :         // The other thing to keep in mind is that AVX always reads in units of 256
     192             :         // bits, or 4 doubles. This means that our number of wavemodes must be
     193             :         // divisible by 4. If it isn't, we simply pad it out with zeros. Since the
     194             :         // final step of the computation of each wavemode is multiplication by the
     195             :         // amplitude, which will be set to 0, these padding wavemodes won't affect
     196             :         // the result.
     197             : 
     198             :         avx_Nm = ((Nm + 4 - 1) / 4) * 4; // round up to next larger multiple of 4:
     199             :                                          // align is 256 = 4 * sizeof(double) bit
     200             :         avx_data = std::vector<double>(itotal * avx_Nm + 3, 0.);
     201             : 
     202             :         // get the first 256-bit aligned element
     203             :         size_t size = avx_data.size() * sizeof(double);
     204             :         void *pointer = avx_data.data();
     205             :         align_offset =
     206             :             (double *)std::align(32, 32, pointer, size) - avx_data.data();
     207             : 
     208             :         // copy into the AVX arrays
     209             :         for (int i = 0; i < Nm; i++) {
     210             :                 avx_data[i + align_offset + avx_Nm * iAxi0] = Ak[i] * xi[i].x;
     211             :                 avx_data[i + align_offset + avx_Nm * iAxi1] = Ak[i] * xi[i].y;
     212             :                 avx_data[i + align_offset + avx_Nm * iAxi2] = Ak[i] * xi[i].z;
     213             : 
     214             :                 // The cosine implementation computes cos(pi*x), so we'll divide out the
     215             :                 // pi here.
     216             :                 avx_data[i + align_offset + avx_Nm * ikkappa0] =
     217             :                     k[i] / M_PI * kappa[i].x;
     218             :                 avx_data[i + align_offset + avx_Nm * ikkappa1] =
     219             :                     k[i] / M_PI * kappa[i].y;
     220             :                 avx_data[i + align_offset + avx_Nm * ikkappa2] =
     221             :                     k[i] / M_PI * kappa[i].z;
     222             : 
     223             :                 // We also need to divide beta by pi, since that goes into the argument
     224             :                 // of the cosine as well.
     225             :                 avx_data[i + align_offset + avx_Nm * ibeta] = beta[i] / M_PI;
     226             :         }
     227             : #endif // ENABLE_FAST_WAVES
     228           2 : }
     229             : 
     230          45 : Vector3d PlaneWaveTurbulence::getField(const Vector3d &pos) const {
     231             : 
     232             : #ifndef ENABLE_FAST_WAVES
     233             :         Vector3d B(0.);
     234         495 :         for (int i = 0; i < Nm; i++) {
     235         450 :                 double z_ = pos.dot(kappa[i]);
     236         450 :                 B += xi[i] * Ak[i] * cos(k[i] * z_ + beta[i]);
     237             :         }
     238          45 :         return B;
     239             : 
     240             : #else  // ENABLE_FAST_WAVES
     241             : 
     242             :         // Initialize accumulators
     243             :         //
     244             :         // There is one accumulator per component of the result vector.
     245             :         // Note that each accumulator contains four numbers. At the end of
     246             :         // the loop, each of these numbers will contain the sum of every
     247             :         // fourth wavemode, starting at a different offset. In the end, each
     248             :         // of the accumulator's numbers are added together (using
     249             :         // hsum_double_avx), resulting in the total sum for that component.
     250             : 
     251             :         __m256d acc0 = _mm256_setzero_pd();
     252             :         __m256d acc1 = _mm256_setzero_pd();
     253             :         __m256d acc2 = _mm256_setzero_pd();
     254             : 
     255             :         // broadcast position into AVX registers
     256             :         __m256d pos0 = _mm256_set1_pd(pos.x);
     257             :         __m256d pos1 = _mm256_set1_pd(pos.y);
     258             :         __m256d pos2 = _mm256_set1_pd(pos.z);
     259             : 
     260             :         for (int i = 0; i < avx_Nm; i += 4) {
     261             : 
     262             :                 // Load data from memory into AVX registers:
     263             :                 //  - the three components of the vector A * xi
     264             :                 __m256d Axi0 =
     265             :                     _mm256_load_pd(avx_data.data() + i + align_offset + avx_Nm * iAxi0);
     266             :                 __m256d Axi1 =
     267             :                     _mm256_load_pd(avx_data.data() + i + align_offset + avx_Nm * iAxi1);
     268             :                 __m256d Axi2 =
     269             :                     _mm256_load_pd(avx_data.data() + i + align_offset + avx_Nm * iAxi2);
     270             : 
     271             :                 //  - the three components of the vector k * kappa
     272             :                 __m256d kkappa0 = _mm256_load_pd(avx_data.data() + i + align_offset +
     273             :                                                  avx_Nm * ikkappa0);
     274             :                 __m256d kkappa1 = _mm256_load_pd(avx_data.data() + i + align_offset +
     275             :                                                  avx_Nm * ikkappa1);
     276             :                 __m256d kkappa2 = _mm256_load_pd(avx_data.data() + i + align_offset +
     277             :                                                  avx_Nm * ikkappa2);
     278             : 
     279             :                 //  - the phase beta.
     280             :                 __m256d beta =
     281             :                     _mm256_load_pd(avx_data.data() + i + align_offset + avx_Nm * ibeta);
     282             : 
     283             :                 // Then, do the computation.
     284             : 
     285             :                 // This is the scalar product between k*kappa and pos:
     286             :                 __m256d z = _mm256_add_pd(_mm256_mul_pd(pos0, kkappa0),
     287             :                                           _mm256_add_pd(_mm256_mul_pd(pos1, kkappa1),
     288             :                                                         _mm256_mul_pd(pos2, kkappa2)));
     289             : 
     290             :                 // Here, the phase is added on. This is the argument of the cosine.
     291             :                 __m256d cos_arg = _mm256_add_pd(z, beta);
     292             : 
     293             :                 // ********
     294             :                 // * Computing the cosine
     295             :                 // * Part 1: Argument reduction
     296             :                 //
     297             :                 //  To understand the computation of the cosine, first note that the
     298             :                 //  cosine is periodic and we thus only need to model its behavior
     299             :                 //  between 0 and 2*pi to be able compute the function anywhere. In
     300             :                 //  fact, by mirroring the function along the x and y axes, even the
     301             :                 //  range between 0 and pi/2 is sufficient for this purpose. In this
     302             :                 //  range, the cosine can be efficiently evaluated with high precision
     303             :                 //  by using a polynomial approximation. Thus, to compute the cosine,
     304             :                 //  the input value is first reduced so that it lies within this range.
     305             :                 //  Then, the polynomial approximation is evaluated. Finally, if
     306             :                 //  necessary, the sign of the result is flipped (mirroring the function
     307             :                 //  along the x axis).
     308             :                 //
     309             :                 //  The actual computation is slightly more involved. First, argument
     310             :                 //  reduction can be simplified drastically by computing cos(pi*x),
     311             :                 //  such that the values are reduced to the range [0, 0.5) instead of
     312             :                 //  [0, pi/2). Since the cosine is even (independent of the sign), we
     313             :                 //  can first reduce values to [-0.5, 0.5) – that is, a simple rounding
     314             :                 //  operation – and then neutralize the sign. In fact, precisely because
     315             :                 //  the cosine is even, all terms of the polynomial are powers of x^2,
     316             :                 //  so the value of x^2 (computed as x*x) forms the basis for the
     317             :                 //  polynomial approximation. If I understand things correctly, then (in
     318             :                 //  IEEE-754 floating point) x*x and (-x)*(-x) will always result in the
     319             :                 //  exact same value, which means that any error bound over [0, 0.5)
     320             :                 //  automatically applies to (-0.5, 0] as well.
     321             : 
     322             :                 // First, compute round(x), and store it in q. If this value is odd,
     323             :                 // we're looking at the negative half-wave of the cosine, and thus
     324             :                 // will have to invert the sign of the result.
     325             :                 __m256d q = _mm256_round_pd(
     326             :                     cos_arg, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
     327             : 
     328             :                 // Since we're computing cos(pi*x), round(x) always yields the center of
     329             :                 // a half-wave (where cos(pi*x) achieves an extremum). This point
     330             :                 // logically corresponds to x=0. Therefore, we subtract this center from
     331             :                 // the actual input argument to find the corresponding point on the
     332             :                 // half-wave that is centered around zero.
     333             :                 __m256d s = _mm256_sub_pd(cos_arg, q);
     334             : 
     335             :                 // We now want to check whether q (the index of our half-wave) is even
     336             :                 // or odd, since all of the odd-numbered half-waves are negative, so
     337             :                 // we'll have to flip the final result. On an int, this is as simple as
     338             :                 // checking the 0th bit. Idea: manipulate the double in such a way that
     339             :                 // we can do this. So, we add 2^52, such that the last digit of the
     340             :                 // mantissa is actually in the ones' position. Since q may be negative,
     341             :                 // we'll also add 2^51 to make sure it's positive. Note that 2^51 is
     342             :                 // even and thus leaves evenness invariant, which is the only thing we
     343             :                 // care about here.
     344             :                 //
     345             :                 // This is based on the int extraction process described here:
     346             :                 // https://stackoverflow.com/questions/41144668/how-to-efficiently-perform-double-int64-conversions-with-sse-avx/41223013
     347             :                 //
     348             :                 // We assume -2^51 <= q < 2^51 for this, which is unproblematic, as
     349             :                 // double precision has decayed far enough at that point that the
     350             :                 // usefulness of the cosine becomes limited.
     351             :                 //
     352             :                 // Explanation: The mantissa of a double-precision float has 52 bits
     353             :                 // (excluding the implicit first bit, which is always one). If |q| >
     354             :                 // 2^51, this implicit first bit has a place value of at least 2^51,
     355             :                 // while the first stored bit of the mantissa has a place value of at
     356             :                 // least 2^50. This means that the LSB of the mantissa has a place value
     357             :                 // of at least 2^(-1), or 0.5. For a cos(pi*x), this corresponds to a
     358             :                 // quarter of a cycle (pi/2), so at this point the precision of the
     359             :                 // input argument is so low that going from one representable number to
     360             :                 // the next causes the result to jump by +/-1.
     361             : 
     362             :                 q = _mm256_add_pd(q, _mm256_set1_pd(0x0018000000000000));
     363             : 
     364             :                 // Unfortunately, integer comparisons were only introduced in AVX2, so
     365             :                 // we'll have to make do with a floating point comparison to check
     366             :                 // whether the last bit is set. However, masking out all but the last
     367             :                 // bit will result in a denormal float, which may either result in
     368             :                 // performance problems or just be rounded down to zero, neither of
     369             :                 // which is what we want here. To fix this, we'll mask in not only bit
     370             :                 // 0, but also the exponent (and sign, but that doesn't matter) of q.
     371             :                 // Luckily, the exponent of q is guaranteed to have the fixed value of
     372             :                 // 1075 (corresponding to 2^52) after our addition.
     373             : 
     374             :                 __m256d invert = _mm256_and_pd(
     375             :                     q, _mm256_castsi256_pd(_mm256_set1_epi64x(0xfff0000000000001)));
     376             : 
     377             :                 // If we did have a one in bit 0, our result will be equal to 2^52 + 1.
     378             :                 invert = _mm256_cmp_pd(
     379             :                     invert, _mm256_castsi256_pd(_mm256_set1_epi64x(0x4330000000000001)),
     380             :                     _CMP_EQ_OQ);
     381             : 
     382             :                 // Now we know whether to flip the sign of the result. However, remember
     383             :                 // that we're working on multiple values at a time, so an if statement
     384             :                 // won't be of much use here (plus it might perform badly). Instead,
     385             :                 // we'll make use of the fact that the result of the comparison is all
     386             :                 // ones if the comparison was true (i.e. q is odd and we need to flip
     387             :                 // the result), and all zeroes otherwise. If we now mask out all bits
     388             :                 // except the sign bit, we get something that, when xor'ed into our
     389             :                 // final result, will flip the sign exactly when q is odd.
     390             :                 invert = _mm256_and_pd(invert, _mm256_set1_pd(-0.0));
     391             :                 // (Note that the binary representation of -0.0 is all 0 bits, except
     392             :                 // for the sign bit, which is set to 1.)
     393             : 
     394             :                 // TODO: clamp floats between 0 and 1? This would ensure that we never
     395             :                 // see inf's, but maybe we want that, so that things dont just fail
     396             :                 // silently...
     397             : 
     398             :                 // * end of argument reduction
     399             :                 // *******
     400             : 
     401             :                 // ******
     402             :                 // * Evaluate the cosine using a polynomial approximation for the zeroth
     403             :                 // half-wave.
     404             :                 // * The coefficients for this were generated using sleefs gencoef.c.
     405             :                 // * These coefficients are probably far from optimal; however, they
     406             :                 // should be sufficient for this case.
     407             :                 s = _mm256_mul_pd(s, s);
     408             : 
     409             :                 __m256d u = _mm256_set1_pd(+0.2211852080653743946e+0);
     410             : 
     411             :                 u = _mm256_add_pd(_mm256_mul_pd(u, s),
     412             :                                   _mm256_set1_pd(-0.1332560668688523853e+1));
     413             :                 u = _mm256_add_pd(_mm256_mul_pd(u, s),
     414             :                                   _mm256_set1_pd(+0.4058509506474178075e+1));
     415             :                 u = _mm256_add_pd(_mm256_mul_pd(u, s),
     416             :                                   _mm256_set1_pd(-0.4934797516664651162e+1));
     417             :                 u = _mm256_add_pd(_mm256_mul_pd(u, s), _mm256_set1_pd(1.));
     418             : 
     419             :                 // Then, flip the sign of each double for which invert is not zero.
     420             :                 // Since invert has only zero bits except for a possible one in bit 63,
     421             :                 // we can xor it onto our result to selectively invert the 63rd (sign)
     422             :                 // bit in each double where invert is set.
     423             :                 u = _mm256_xor_pd(u, invert);
     424             : 
     425             :                 // * end computation of cosine
     426             :                 // **********
     427             : 
     428             :                 // Finally, Ak*xi is multiplied on. Since this is a vector, the
     429             :                 // multiplication needs to be done for each of the three
     430             :                 // components, so it happens separately.
     431             :                 acc0 = _mm256_add_pd(_mm256_mul_pd(u, Axi0), acc0);
     432             :                 acc1 = _mm256_add_pd(_mm256_mul_pd(u, Axi1), acc1);
     433             :                 acc2 = _mm256_add_pd(_mm256_mul_pd(u, Axi2), acc2);
     434             :         }
     435             : 
     436             :         return Vector3d(hsum_double_avx(acc0), hsum_double_avx(acc1),
     437             :                         hsum_double_avx(acc2));
     438             : #endif // ENABLE_FAST_WAVES
     439             : }
     440             : 
     441             : } // namespace crpropa

Generated by: LCOV version 1.14